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Precoloring Extension Problem

@ Recall proper k-coloring, proper k-list coloring, x(G),
xe(G)-



Precoloring Extension Problem

@ |s there a proper coloring of a graph G subject to some of
the vertices having prescribed colors? A function r with
non-empty domain D C V(G) and co-domain of a palette
of colors.



Precoloring Extension Problem

@ |s there a proper coloring of a graph G subject to some of
the vertices having ? A function r with
non-empty domain D C V(G) and co-domain of a palette
of colors.

@ This is a classical problem that has been studied under
many contexts. Its not always possible to have such a
proper coloring, so typically we look for restrictions on the
structure induced by the precolored vertices, etc.



Precoloring Extension Problem

@ |s there a proper coloring of a graph G subject to some of
the vertices having prescribed colors? A function r with
non-empty domain D C V(@) and co-domain of a palette
of colors.

@ What if such a precoloring does not extend, can we instead
ask for a coloring which matches the precoloring on many
vertices (say, on a constant fraction of the precolored
vertices)?



Precoloring Extension Problem

@ |s there a proper coloring of a graph G subject to some of
the vertices having prescribed colors? A function r with
non-empty domain D C V(G) and co-domain of a palette
of colors.

@ What if such a precoloring does not extend, can we instead
ask for a coloring which matches the precoloring on many
vertices (say, on a constant fraction of the precolored
vertices)?

@ Always possible, by permuting the colors in a k-coloring of
G, we can easily obtain a k-coloring of G that matches r
on at least |[dom(r)|/k vertices.



List Coloring with Requests

@ Dvorak, Norin, and Postle (2019): A proper list coloring,
but a preferred color is given for some subset of vertices
and we wish to color as many vertices in this subset with
its preferred colored as possible; a flexible version of the
classical precoloring extension problem.



List Coloring with Requests

@ Given a graph G and a list assignment L of G.
A request of Lis a function r with non-empty domain
D C V(G) such that r(v) € L(v) for each v € D.
Forany e € (0,1], (G, L, r) is e-satisfiable if there exists a
proper L-coloring f of G such that f(v) = r(v) for at least
e|D| vertices in D.



List Coloring with Requests

@ Given a graph G and a list assignment L of G.
A request of L is a function r with non-empty domain
D C V(G) such that r(v) € L(v) for each v € D.
Forany e € (0,1], (G, L, r) is c-satisfiable if there exists a
proper L-coloring f of G such that f(v) = r(v) for at least
e|D| vertices in D.

@ (G,L)is c-flexible if (G, L, r) is e-satisfiable whenever r is a
request of L.
Gis (k. ¢)-flexible if (G, L) is e-flexible whenever L is a
k-assignment for G.



List Coloring with Requests

@ (G,L)is c-flexible if (G, L, r) is e-satisfiable whenever r is a
request of L.
Gis (k.c)-flexible if (G, L) is e-flexible whenever L is a
k-assignment for G.

@ If Gis (k, ¢)-flexible, then it immediately follows:

(i) Gis (K, € )-flexible for any k' > k and ¢’ < ¢;

(i) any spanning subgraph H of G is (k, ¢)-flexible;
(iii) G is k-choosable.



Previous works

@ Dvorak, Norin, and Postle mostly focused on d-degenerate
graphs, which are known to be (d + 1)-choosable. They
showed that d-degenerate graphs are all (d + 2, ¢)-flexible
for some ¢ > 0.

@ The main open problem Dvorak-Norin-Postle asked was:
Are all d-degenerate graphs, (d + 1, ¢(d))-flexible for some
e(d) > 0?



Previous works

@ The main open problem Dvorak-Norin-Postle asked was:
Are all d-degenerate graphs, (d + 1, ¢(d))-flexible for some
e(d) > 0?

@ They showed there exists an ¢ > 0 such that every planar
graph G is (6, ¢)-flexible.

@ Flexible list coloring has been studied extensively for planar
graphs that are 5-choosable, and for restricted subclasses
of planar graphs that are k-choosable with k < 5.

Several papers on (k, ¢)-flexibility, with k € {5, 4, 3}, of
planar graphs with large enough girth or excluding certain
cycles.



Motivation for our work

@ Find the largest possible e for which G is (k, €)-flexible; that
is, one would prefer to have a larger portion of the
requested colors on vertices satisfied.



Motivation for our work

@ Find the largest possible e for which G is (k, €)-flexible; that
is, one would prefer to have a larger portion of the
requested colors on vertices satisfied.

@ Only previous result of this flavor is the following.

Bradshaw, T. Masarik, L. Stacho (2022): Let G be a
connected graph with A(G) > 3 that is not a copy of
Ka(g)+1- Then, Gis (A(G),1/(6A(G)))-flexible. Moreover,
1/(6A(@)) is within a constant factor of being best
possible.



Improving older results - |

Theorem (K., Mathew, Mudrock, Pelsmajer (2022+))

Suppose G is d-degenerate. Then, G is (d + 2, 2(,[1 )-flexible.




Improving older results - |

Theorem (K., Mathew, Mudrock, Pelsmajer (2022+))

Suppose G is d-degenerate. Then, G is (d + 2, 2J—,Q-f/exible.

@ Proved using a randomized algorithm:
We can order vertices of G as vy, ..., v, such that for all
i € [n], vi has at most d neighbors v; with j > i, and order
each list of colors, L(v;), such that the requested color (if it
exists) is the first color. Now pick uniformly from the first
two available colors as we color the vertices in order.



Improving older results - |

Theorem (K., Mathew, Mudrock, Pelsmajer (2022+))

Suppose G is d-degenerate. Then, G is (d + 2, 2d‘—q)-f/exible.

@ This improves the following:

Theorem (Dvorak, Norin, and Postle (2019))
Suppose G is d-degenerate. Then,

. 1 .
Gis (d +2, WW> -flexible.



Improving older results - |

Theorem (K., Mathew, Mudrock, Pelsmajer (2022+))

Suppose G is d-degenerate. Then, G is (d + 2, 2d‘—_J-f/exible.

Theorem (K., Mathew, Mudrock, Pelsmajer (2022+))

Let G be an s-choosable graph. Then, G is
(s +1,1/x(G?))-flexible.



Improving older results - |

Theorem (K., Mathew, Mudrock, Pelsmajer (2022+))

Suppose G is d-degenerate. Then, G is (d + 2, 2C}—q)-f/exible.

Theorem (K., Mathew, Mudrock, Pelsmajer (2022+))

Let G be an s-choosable graph. Then, G is
(s+1,1/x(G?))-flexible.

This yields an improvement on our first theorem above for
d-degenerate graphs with maximum degree A < 29/d.

Corollary (K., Mathew, Mudrock, Pelsmajer (2022+))

Let G be a d-degenerate graph with maximum degree A.
If G is s-choosable, then G is
(s+1,1/(A(2d — 1) + d — d? + 1))-flexible.



Improving older results - I

@ If we focus solely on k and allow arbitrarily small e > 0,
then our colorings need only satisfy the color request at a
single vertex. Then, without loss of generality, we need to
only study requests with domain of size 1, as those have
the most restrictive requirement.



Improving older results - I

@ If we focus solely on k and allow arbitrarily small ¢ > 0,
then our colorings need only satisfy the color request at a
single vertex. Then, without loss of generality, we need to
only study requests with domain of size 1, as those have
the most restrictive requirement.

@ Dvorak, Norin, and Postle say “A necessary condition for
flexibility is that requests with singleton domain can be satisfied.
Coming back to the case of d-degenerate graphs with lists of
size d + 1, even proving this necessary condition is non-trivial
and we can only do it in the special case that d + 1 is a prime.”

Theorem (Dvorak, Norin, and Postle (2019))

Letd > 2 such that d + 1 is a prime. If G is a d-degenerate
graph, L is a (d + 1)-assignment, and r is a request for G with
domain of size 1, then (G, L, r) is 1-satisfiable.




Improving older results - I

Theorem (Dvorak, Norin, and Postle (2019))

Letd > 2 such that d + 1 is a prime. If G is a d-degenerate
graph, L is a (d + 1)-assignment, and r is a request for G with
domain of size 1, then (G, L, r) is 1-satisfiable.

Using the Alon-Tarsi Theorem we are able to extend their
Theorem to all d for bipartite d-degenerate graphs.

Theorem (K., Mathew, Mudrock, Pelsmajer (2022+))

For any bipartite d-degenerate graph G with a (d + 1)-list
assignment L and request r with domain D of size 1, (G, L, r) is
1-satisfiable.



Improving older results - I

Theorem (K., Mathew, Mudrock, Pelsmajer (2022+))
For any bipartite d-degenerate graph G with a (d + 1)-list

assignment L and request r with domain D of size 1, (G, L, r) is
1-satisfiable.

We can order vertices of G as vy, ..., v, such that for all
i € [n], v; has at most d neighbors v; with j > i. Suppose
that vy is the vertex in the domain of r.

We show that there is a way, using Menger’s Theorem, to
orient the edges of G to obtain a digraph in which every
vertex has out-degree at most d and v, has out-degree
zero. The result then follows from Alon-Tarsi.



Maximizing the number of vertex requests satisfied

For each graph G, what is the largest ¢ so that G is
(k, €)-flexible for some k?



Maximizing the number of vertex requests satisfied

@ It is possible that r(v) is the same color for all v € D; for
example, let L be the k-list assignment such that L(v) = [K]
forall ve V(G) andlet r(v) =1 forall v € D. Then at
most o G[D]) vertices in D will have their request fulfilled.
So, € < ming.pcy(g) a(G[D])/|D| for any (k, ¢)-flexible
graph G.



Maximizing the number of vertex requests satisfied

@ ltis possible that r(v) is the same color for all v € D; for
example, let L be the k-list assignment such that L(v) = [K]
forall v e V(G)andlet r(v) =1 forall v e D. Then at
most «(G[D]) vertices in D will have their request fulfilled.
So, € < ming.pcy(g) a(G[D])/|D| for any (k, ¢)-flexible
graph G.

® The Hall ratio of a graph Gis p(G) — maxy a1 -

The Hall ratio was first studied in 1990 by Hilton and Johnson Jr. under the name
Hall-condition number in the context of list coloring. In the past 30 years, the Hall
ratio has received much attention due to its connection with both list and
fractional coloring.



Maximizing the number of vertex requests satisfied

For each graph G, what is the largest € so that G is
(k, €)-flexible for some k?

The Hall ratio of a graph Gis p(G) = maxj e ‘(‘f%)‘

Proposition (K., Mathew, Mudrock, Pelsmajer (2022+))
There exists k such that G is (k, €)-flexible if and only if
e <1/p(G).



Maximizing the number of vertex requests satisfied

For each graph G, what is the largest € so that G is
(k, €)-flexible for some k?

The Hall ratio of a graph Gis p(G) — maxj yc g %

Proposition (K., Mathew, Mudrock, Pelsmajer (2022+))
There exists k such that G is (k, €)-flexible if and only if

e <1/p(G).

@ We define the list flexibility number of G, denoted 1., (G),
to be the smallest k such that G is (k, 1/p(G))-flexible.



Maximizing the number of vertex requests satisfied

@ We define the list flexibility number of G, denoted ., (G),
to be the smallest k such that G is (k, 1/p(G))-flexible.



List flexibility number

@ .. (G) is the smallest k such that Gis (k, 1/p(QG))-flexible.

@ |s maximizing e meaningfully different from a flexible list
coloring with smaller e > 07 In other words, are there any
graphs G and k € N such that G is (k, ¢)-flexible for some
e > 0, but Gis not (k,1/p(G))-flexible? The following result
shows that the answer is yes.

Proposition (K., Mathew, Mudrock, Pelsmajer (2022+))
Suppose G = Kz 7. Then, G is (3,1/10)-flexible and
Xrex(G) > 3.



List flexibility number

@ \/x(G) is the smallest k such that Gis (k, 1/p(G))-flexible.
® x¢(G) < xnex(G) < A(G) + 1.

@ It follows that xex(Kn) = nand xex(Ck) = 3 for odd k. It is
natural to ask whether a Brooks-type theorem is true for
Xflex @S well.

Question: What are all the graphs G such that
Xrex(G) = A(G) +17?



Xfiex VS degeneracy

@ Can the Dvorak-Norin-Postle-Conjecture that
d-degenerate graphs G are (d + 1, ¢(d))-flexible for some
e(d) > 0 be strengthened t0 fex (G) < d + 17
Question: Does there exist a graph G with degeneracy d
satisfying xfiex(G) > d +1?



Xfiex VS degeneracy

@ Can the Dvorak-Norin-Postle-Conjecture that
d-degenerate graphs G are (d + 1, ¢(d))-flexible for some
e(d) > 0 be strengthened to e (G) < d + 17
Question: Does there exist a graph G with degeneracy d
satisfying xfex(G) > d +1?

@ Alon (2000) showed for any graph G with degeneracy d,
(1/2 —0(1)) logo(d + 1) < x¢(G) and is sharp up to a
factor of 2. How sharp is this lower bound for x fiex(G)?
Question: Suppose
F(d) = min{x#ex(G) : the degeneracy of G is at least d}.
What is the asymptotic behavior of 7(d) as d — oo?



Xfiex VS degeneracy

@ Alon (2000) showed for any graph G with degeneracy d,
(1/2 —0o(1)) logs(d + 1) < x¢(G) and is sharp up to a
factor of 2. How sharp is this lower bound for x fiex(G)?

Question: Suppose
F(d) = min{xsex(G) : the degeneracy of G is at least d}.

What is the asymptotic behavior of 7(d) as d — co?

@ We are able to show 7 (d) = O(d) while Alon’s result
implies F(d) = Q(logs(d)), as d — .



Xfiex VS degeneracy

Theorem (K., Mathew, Mudrock, Pelsmajer (2022+))

Suppose G is an n-vertex, s-choosable graph with xfex(G) = m
andn>2. Letl=[n/p(G)]. LetJ = GV G. Then, for any real
numberr > 2,

Xtiex(J) < max { {/+ 'i’%ﬁf;’ﬂ Jr(s—1)+1, m}.

@ H is the binary Entropy function.



Yflex VS degeneracy

Theorem (K., Mathew, Mudrock, Pelsmajer (2022+))

Suppose G is an n-vertex, s-choosable graph with x fex(G) = m
andn>2. Letl=[n/p(G)]. Letd = GV G. Then, for any real
numberr > 2,

Xfiex(J) < max { P - 'ffz,fﬁf/’,ﬂ r(s—1)+1, m} .

Theorem (K., Mathew, Mudrock, Pelsmajer (2022+))
Suppose n is a positive even integer, and G = P,V Pp. If

p € (0,1) and k > max{2, n/2} satisfy

(n/2)(1 = p)*~2 + np*~"="2(p + (k — n/2)(1 — p)) < 1, then
Xrex(G) < k.



Yflex VS degeneracy

Theorem (K., Mathew, Mudrock, Pelsmajer (2022+))

Suppose n is a positive even integer, and G = P,V Pp. If

p € (0,1) and k > max{2, n/2} satisfy

(n/2)(1 — p)<=2 + np*~"="2(p + (k — n/2)(1 — p)) <1, then
Xriex(G) < K.

Corollary

Suppose n is a positive even integer satisfying n > 50. Then,
Xfiex(PnV Pp) < [n/2 4 In(n)].

Since degeneracy of P,V Pnis n+ 1, it follows

Corollary
F(d) grows no faster than d/2 as d — oc.



Xf/ex( G) VS XE( G)

@ Recall X{?(G) < Xf/ex(G) < A(G) + 1.

@ It is natural to ask whether y e (G) can be bounded above
by a function of x,(G).
Question: Does there exist a function f such that for every
graph G, xrex(G) < f(x«(G))?



Xf/ex( G) VS Xé( G)

® Recall \/(G) < xrex(G) = A(G) + 1.

@ It is natural to ask whether x e (G) can be bounded above
by a function of x,(G).
Question: Does there exist a function f such that for every

graph G, xfiex(G) < f(x(G))?

@ We show that there is no universal constant C such that
Xrex(G) < xe(G) + C.



Xfiex(G) Vs x¢(G)

@ We show that there is no universal constant C such that
Xflex(G) < XK(G) + C.

Proposition (K., Mathew, Mudrock, Pelsmajer (2022+))
Suppose that | € N and to = S°i_ (05" ) (21)'.

(i) Fort > to, Xfiex(Kai+1,t) > 21+ 2.

(ii) For s < ty, x¢(Kai+1,s) < [31/2] whenever | > 100000.

Corollary

Letty =314 (2'/21:1—/)(2/)[-
For each | > 100000, X fiex(Kai11,1) > 3xe(Korr1,1) + 3



Xrex VS List packing

@ Anidea implicit in an earlier work (for k-trees):

Proposition (K., Mathew, Mudrock, Pelsmajer (2022+))
Suppose that G is a graph, L is a k-assignment for G, and there
is a set S of mk proper L-colorings such that for each vertex

v € V(G) and each color ¢ € L(v), vertex v is colored by c in
exactly m of the L-colorings of S. Then, (G, L,r) is
1/k-satisfiable for any request r of L.



Xrex VS List packing

@ An idea implicit in an earlier work (for k-trees):

Proposition (K., Mathew, Mudrock, Pelsmajer (2022+))
Suppose that G is a graph, L is a k-assignment for G, and there
is a set S of mk proper L-colorings such that for each vertex

v € V(G) and each color ¢ € L(v), vertex v is colored by c in
exactly m of the L-colorings of S. Then, (G, L,r) is

1 /k-satisfiable for any request r of L.

@ For a non-trivial tree T, it is easy to see that for any
2-assignment L, there exist 2 proper L-colorings that are
distinct on each vertex. Here m=1 and k = 2.

Since p(T) =2 and xpex(T) > xe(T) = 2, above
Proposition implies xfex(T) = 2.



Xrex VS List packing

@ List packing is a relatively new notion that was first
suggested by Alon, Fellows, and Hare (1996), and formally
defined in a recent paper of Cambie, Batenburg, Davies,
Kang (2021+/ to appear in RSA 2023).



Xrex VS List packing

@ List packing is a relatively new notion that was first
suggested by Alon, Fellows, and Hare (1996), and formally
defined in a recent paper of Cambie, Batenburg, Davies,
Kang (2021+/ to appear in RSA 2023).

@ Let L be a list assignment for a graph G. An L-packing of G
of size k is a set of proper L-colorings {fi, ..., fx} of G such
that f;(v) # f;(v) whenever i,j € [K], i # j,and v € V(G).
The list packing number of G, denoted \;(G), is the least k
such that G has a proper L-packing of size k whenever L is
a k-assignment for G.

® X(G) < xe(G) < x;(G).



Xrex VS List packing

Proposition (K., Mathew, Mudrock, Pelsmajer (2022+))
Suppose that G is a graph, L is a k-assignment for G, and there
is a set S of mk proper L-colorings such that for each vertex

v € V(G) and each color ¢ € L(v), vertex v is colored by c in
exactly m of the L-colorings of S. Then, (G, L,r) is
1/k-satisfiable for any request r of L.

Corollary (K., Mathew, Mudrock, Pelsmajer (2022+))
For any graph G, G is (x;(G),1/x;(G))-flexible.



Xrex VS List packing

@ The list packing number of G, denoted \;(G), is the least k
such that G has a proper L-packing of size k whenever L is
a k-assignment for G.

X(G) < x(G) < x;(G).
Corollary (K., Mathew, Mudrock, Pelsmajer (2022+))
For any graph G, G is (x;(G),1/x;(G))-flexible.



Xrex VS List packing

@ The list packing number of G, denoted (&), is the least k
such that G has a proper L-packing of size k whenever L is
a k-assignment for G.
X(G) < xe(G) < x;(G).

Corollary (K., Mathew, Mudrock, Pelsmajer (2022+))
For any graph G, G is (x;(G), 1/x;(G))-flexible.

@ In view of the Corollary above, and since \/(G) < \pex(G),
it is natural to ask whether xfex(G) can be bounded above
by a function of x;(G). More ambitiously,

Conjecture: For any graph G, xex(G) < x;(G).



Xrex VS List packing

@ Conjecture: For any graph G, xyex(G) < x}(G).

@ Cambie and Hamalainen (2023+): x;(K37) = 3,
disprove this conjecture with help of
K., Mathew, Mudrock, Pelsmajer (2022+): xfex(K3.7) > 3,
and conjecture there are infinitely many counterexamples.



Xrex VS List packing

@ Conjecture: For any graph G, xex(G) < x3(G).

@ Cambie and Hamalainen (2023+): x}(K37) = 3,
disprove this conjecture with help of
K., Mathew, Mudrock, Pelsmajer (2022+): xfex(K37) > 3,
and conjecture there are infinitely many counterexamples.

@ However, it follows from our Proposition and a result of
Cambie, Batenburg, Davies, Kang (2021 +) that:
Every graph G on n vertices is
(x;(G),1/((5+ 0o(1))p(G)(log n)?))-flexible where the o(1)
term tends to 0 as n tends to infinity.



Xfiex Using List packing

Proposition (K., Mathew, Mudrock, Pelsmajer (2022+))
Suppose that G is a graph, L is a k-assignment for G, and there
is a set S of mk proper L-colorings such that for each vertex

v € V(G) and each color ¢ € L(v), vertex v is colored by c in
exactly m of the L-colorings of S. Then, (G, L,r) is
1/k-satisfiable for any request r of L.

Corollary (K., Mathew, Mudrock, Pelsmajer (2022+))
For any graph G, G is (x;(G),1/x;(G))-flexible.



Xfiex Using List packing

Corollary (K., Mathew, Mudrock, Pelsmajer (2022+))
For any graph G, G is (x;(G),1/x;(G))-flexible.

@ For a non-trivial tree T, it is easy to see that (x;(T) = 2.
Since p(T) =2 and xpex(T) > xe(T) = 2, above
Proposition implies ey (T) = 2.

@ It follows from above Proposition and a result of Cambie,
Batenburg, Davies, Kang (2021 +) that:

Every graph G on n vertices is
(x;(G),1/((5+ o(1))p(G)(log n)?))-flexible where the o(1)
term tends to 0 as n tends to infinity.



Xfiex Using List packing

@ Using x;(Pn) = 2 and our Proposition, we get
Proposition (K., Mathew, Mudrock, Pelsmajer (2022+))
The grid P,0OPn, is (3,1/3)-flexible.

And, we are able to obtain the best possible result for the

n-ladder P[P,
Proposition (K., Mathew, Mudrock, Pelsmajer (2022+))
Suppose G = P.[OP, withn > 2. Then, G is (3, 1/2)-flexible.
Consequently, xfex(G) = 3.

and, more generally

Proposition (K., Mathew, Mudrock, Pelsmajer (2022+))

Suppose G is (k, €)-flexible. Then
GOH is (max{k, A(H) + x«(G)}, ¢/ x(H))-flexible.



Thank You! !uestionsl!

@ Dvorak, Norin, and Postle (2019): Are all d-degenerate graphs,
(d + 1, ¢(d))-flexible for some e(d) > 0?

@ For any d-degenerate graph G with a (d + 1)-list assignment L
and request r with domain D of size 1, show that (G, L, r) is
1-satisfiable.

@ What are all the graphs G such that xex(G) = A(G) +1?

@ Does there exist a graph G with degeneracy d satisfying
Xf/ex(G) >d+17

@ What is the asymptotic behavior of
F(d) = min{x#ex(G) : the degeneracy of Gis at least d} as
d — oo? Linear or Logarithmic in d?

@ Can yex(G) can be bounded above by a function of x,(G)?

@ Can xyex(G) can be bounded above by a function of x;(G)?

Are there infinitely many counterexamples to xex(G) < x;(G)?

@ Let ¢ be the function that maps each k € N to the largest € such
that G is (k, €)-flexible. Clearly, eg(k) = a/b for some integers
0<a<b<|V(G) and eg(k) < 1/p(G). Study ¢g for various G.



Thank You! Questions?

@ Dvorak, Norin, and Postle (2019): Are all d-degenerate graphs,
(d + 1, ¢(d))-flexible for some ¢(d) > 0?

@ For any d-degenerate graph G with a (d + 1)-list assignment L
and request r with domain D of size 1, show that (G, L, r) is
1-satisfiable.

@ What are all the graphs G such that xex(G) = A(G) +1?

@ Does there exist a graph G with degeneracy d satisfying
Xf/ex(G) >d+17

@ What is the asymptotic behavior of
F(d) = min{xsex(G) : the degeneracy of Gis at least d} as
d — oo? Linear or Logarithmic in d?

@ Can ysex(G) can be bounded above by a function of x,(G)?

@ Can xex(G) can be bounded above by a function of x;(G)?

Are there infinitely many counterexamples to xsex(G) < x;(G)?

@ Let e be the function that maps each k € N to the largest e such
that G is (k, €)-flexible. Clearly, eg(k) = a/b for some integers
0<a<b<|V(G) and eg(k) < 1/p(G). Study ¢g for various G.



