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Abstract

Positive definite kernels play an increasingly prominent role in many applications such as
scattered data fitting, numerical solution of PDEs, computer experiments, machine learning,
rapid prototyping and computer graphics. We discuss some of the historical and current devel-
opments of the theory and applications of positive definite kernels – always with an eye toward
the mathematics of Göttingen in general and Robert Schaback in particular. A few comments
concerning the future of the field are also provided.

1 Introduction

This article represents an expanded version of a colloquium presentation made during the Work-
shop on Kernel Functions and Meshless Methods honoring the 65th birthday of Robert Schaback in
Göttingen on January 14, 2011. As such, the following discussion of the current state-of-the-art of
approximation methods based on the use of positive definite kernels is intentionally biased toward
favoring the work of Robert Schaback, his many students and collaborators, and the University of
Göttingen, in general.

1.1 Working with Positive Definite Kernels

Let us begin by roughly outlining three general areas of study that involve positive definite kernels.

Theory: The foundation for this work lies mostly in functional, numerical and stochastic analysis
and deals with concepts such as reproducing kernel Hilbert spaces, positive definite and
completely monotone functions, convergence analysis, alternate basis representations, and
(Gaussian) random fields.

Computation: This work reaches into numerical linear algebra, computational statistics and com-
puter science and is concerned with issues such as parameter selection, stable, fast and efficient
algorithms, regularization techniques, appropriate data structures, and the implementation
in a high-performance computing environment.

Applications: This area is arguably the largest of these three and covers problems such as basic
data fitting (in both the deterministic and stochastic settings), the numerical solution of
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PDEs (both deterministic and stochastic), statistical or machine learning and classification,
multivariate integration, multivariate optimization, engineering design (both in the sense of
geometric design as well as in the sense of design of experiments), computer graphics, and
many more.

Even though I have decided to describe the field of positive definite kernels using these three
categories, the boundaries separating the areas are rather soft. In order for someone to make
significant progress on any of the topics listed above, that person will almost certainly require at
least some expertise in all three categories. As will become apparent from the discussion that
follows, the contributions of Robert Schaback have been numerous and significant in all three of
these general areas.

An indication of the important role positive definite kernels play in many different fields is
provided by the following rapidly growing, and probably incomplete, list of monographs. All of
these books contain at least a significant portion that is concerned with positive definite kernels.

Analysis: Berg, Christensen and Ressel [8], Bergman [9], Bochner [11], Meschkowski [103], Saitoh
[123, 124], Wells and Williams [152]

Approximation Theory: Buhmann [21], Cheney and Light [24], Fasshauer [38], Freeden, Ger-
vens and Schreiner [55], Iske [74], Wendland [155]

Engineering Applications: Atluri [3], Atluri and Shen [4], Belytschko and Chen [7], Forrester,
Sobester and Keane [52], Li and Liu [88], Liu [90], Liu and Liu [91]

Geostatistics: Cressie [28], Kitanidis [80], Matérn [95], Matheron [97], Stein [146]

Probability Theory and Statistics: Berlinet and Thomas-Agnan [10], Wahba [151]

Statistical/Machine Learning: Catoni [23], Cristianini and Shawe-Taylor [29], Cucker and Zhou
[30], Hastie, Tibshirani and Friedman [65], Joachims [76], Rasmussen and Williams [117],
Schölkopf and Smola [141], Shawe-Taylor and Cristianini [144], Steinwart and Christmann
[147], Vapnik [150]

In addition to these monographs, the historical papers by Aronszajn [2], Mercer [101] and
Schmidt [140] as well as a few more recent survey articles such as those by Stewart [148], Martin
Buhmann [20] and by Robert Schaback with Holger Wendland [135] and with Michael Scheuerer
and Martin Schlather [139] should not be forgotten.

1.2 History

Figure 1: Carl Friedrich
Gauß in 1840.

While the serious mathematical development of positive definite func-
tions and reproducing kernel Hilbert spaces did not begin until well into
the 20th century (see Section 2.2), one of the best known positive def-
inite kernels, the Gaussian kernel or normal distribution function (see
Example 1)

K(x, y) = e−ε
2|x−y|2 , x, y ∈ R, ε > 0, (1)

is closely associated with Carl Friedrich Gauß, who was director of the
observatory in Göttingen from 1807 until his death in 1855.

The first occurrence of the Gaussian kernel in the writings of Gauß
is shown in Figure 2. Gauß mentioned the function that now so often
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carries his name in 1809 in his second book Theoria motus corporum coelestium in sectionibus
conicis solem ambientium (Theory of the motion of the heavenly bodies moving about the sun
in conic sections) [57] in the context of least squares calculations of the maximum likelihood (two
other concepts introduced by Gauß in this book) of his astronomical measurements. As one can
see, Gauß gives credit to Laplace for having first computed the relevant integral (in 1783). Figure 3
shows the corresponding excerpt from Pierre-Simon de Laplace’s work [81, Sect.XXXVII].

(a) Original source in Latin. (b) English translation.

Figure 2: Excerpt from [57, Sect.177] showing the first occurrence of the Gaussian kernel in the
work of Gauß.

Figure 3: Laplace’s earlier [81, Sect.XXXVII] discussion of the normal distribution.

Figure 4: Robert Schaback’s mathe-
matical ancestry traced back to Gauß.

In order to provide a smooth and direct connection
from Carl Friedrich Gauß to Robert Schaback we display a
mathematical ancestry tree of Robert Schaback compiled
based on data available at [96] in Figure 4. A few things
about this ancestry chart are worth noting.

1. Each of the mathematicians listed in an orange-
yellowish box had his primary appointment in
Göttingen.

2. Many of the names listed have made significant con-
tributions to the foundations of the present-day field
of positive definite kernels (certainly Gauß, Bessel,
Hilbert, Schmidt, Bochner, Karlin and Schaback).

3. The lower-left branch was added because it features
the names of Schmidt, Bochner and Karlin.
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4. The top portion of the tree is so significant that is was chosen as the image on the main page
of [96].

The mathematical heritage of Gauß, Hilbert and Schaback is continued by Robert Schaback’s
many Ph.D. students listed in Table 1. Robert mentored the first four students on the list during
his time in Bonn from 1973-1976. The names of those students whose thesis was related to positive
definite kernels was italicized. This provides further evidence for the important role the University
of Göttingen plays in the field of positive definite kernels.

Ludwig Cromme (1975) Hartmut Förster (1977) Werner Ehm (1977)
Sabine Kamprowski (1978) Immo Diener (1983) Walter Brübach (1984)
Elizabeth Gillet (1985) Klaus Nottbohm (1986) Zongmin Wu (1986)
Heiko Bürger (1992) Armin Iske (1994) Marko Weinrich (1994)
Thomas Früh (1995) Holger Wendland (1996) Martina Domeyer (1997)
Carsten Franke (1998) Lin-Tian Luh (1998) Sandro Hartmann (1998)
Jens Trapp (1998) Uwe Heinz Bünting (1999) Robert Zores (1999)
Anja Schreiber (2000) Roland Opfer (2004) Mohammed Mouattamid (2005)
Karsten Scheibe (2006) Tobias Block (2008) Christian Rieger (2008)
Stefan Müller (2009)

Table 1: Robert Schaback’s Ph.D. students at the Universities of Bonn (1975-1978) and Göttingen.
Italicized names indicate a thesis topic related to positive definite kernels.

2 Positive Definite Kernels and Reproducing Kernel Hilbert Spaces

2.1 Positive Definite Kernels

The study of positive definite functions, or – slightly more generally – positive definite kernels, in
the field of analysis began either with the work of Maximilian Mathias [98], a student of Erhard
Schmidt’s or with that of James Mercer [101]. As pointed out in Stewart’s survey from 1976 [148],

Mathias and the other early workers with p.d. functions of a real variable were chiefly
concerned with Fourier transforms and apparently did not realize that more than a decade
previously Mercer and others had considered the more general concept of positive defi-
nite kernels K(x, y) [. . .] in research on integral equations. I have likewise found that
present-day mathematicians working with some of the manifestations of p.d. functions
are unaware of other closely related ideas. Thus one of the purposes of this survey is to
correlate some of the more important generalizations of p.d. functions with the hope of
making them better known.

Perhaps the most fundamental contributions, namely characterizations of positive definite func-
tions in terms of Fourier transforms, were made a few years later by Salomon Bochner [11] and
Iso Schoenberg [142]. These contributions were used by Micchelli [104] as the starting point of his
proofs of the non-singularity of the system matrices associated with radial basis function interpo-
lation (more on interpolation later). Also in the 1930s, Aleksandr Khinchin [79] used Bochner’s
theorem to establish the foundation for the study of stationary stochastic processes in probability
theory.
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Figure 5: Left to right: Erhard Schmidt, James Mercer, Salomon Bochner, Iso Schoenberg and
Aleksandr Khinchin.

We now present the well-known definition of a positive definite matrix K as it can be found in
just about any book on linear algebra (see, e.g., [72]) and relate the concept of positive definite
functions/kernels to this idea.

Definition 1. A real symmetric N×N matrix K is called positive definite if its associated quadratic
form is positive for any nonzero coefficient vector c = [c1, . . . , cN ]T ∈ RN , i.e.,

N∑
i=1

N∑
j=1

cicjKij > 0.

For the purposes of this paper a kernel K is nothing but a real-valued function of two variables,
i.e.,

K : Ω× Ω→ R, K : (x, z) 7→ K(x, z).

Here Ω is usually a subset of Rd, but it may also be a rather general set as happens frequently in
statistical learning applications. Other possible domains Ω include spheres or other Riemannian
manifolds (see, e.g., Example 3 or [56]), or even locally compact groups [62]. More examples of
such general settings are reported in [148].

A positive definite kernel K can be viewed as an infinite-dimensional positive definite matrix
K. In fact, this can be done in two different ways. First, in the sense of Mathias, where we assume
that the matrix K is generated by the kernel K in the following sense.

Definition 2. A symmetric kernel K is called positive definite on Ω if its associated kernel ma-
trix K = (K(xi,xj))

N
i,j=1 is positive definite for any N ∈ N and for any set of distinct points

{x1, . . . ,xN} ⊂ Ω.

Many generalizations of this basic definition exist. For example, the coefficient vectors c =
[c1, . . . , cN ]T as well as the kernel K may be allowed to be complex (as already assumed in Bochner’s
work), or the kernel may be matrix-valued as is desired for recent applications in fluid dynamics,
where one may want to ensure that the kernel is divergence-free by construction (see, e.g., [143]
and the earlier fundamental work by Narcowich and Ward [109] as well as [92]).

Alternatively, coming more from the work of Mercer, who was concerned with integral operators,
we can replace the finite-dimensional discrete quadratic form by an infinite-dimensional one and
arrive at a definition such as

Definition 3. A symmetric kernel K is called integrally positive definite on Ω if∫
Ω

∫
Ω
K(x, z)u(x)u(z)dxdz > 0
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Figure 6: Left to right: David Hilbert, Nachman Aronszajn, Stefan Bergman and E. H. Moore.

for all u ∈ L1(Ω).

Bochner showed that the notions of positive definiteness as stated in Definitions 2 and 3 are
equivalent for continuous kernels. We will return to the work of Mercer and Schmidt and its
connection to integral operators in Section 6 when we discuss eigenfunction expansions of positive
definite kernels.

2.2 Reproducing Kernel Hilbert Spaces

The concept of a reproducing kernel Hilbert space was introduced in 1950 independently by Nachman
Aronszajn [2] and Stefan Bergman [9], and even earlier by E. H. Moore [106] who referred to
reproducing kernels as positive Hermitian matrices, and to whom, along with Mercer, Aronszajn
gives much credit in [2].

The reproducing property satisfied by a symmetric reproducing kernel K is as follows

〈K(x, ·), f〉H(K,Ω) = f(x),

i.e., the reproducing kernel acts as a point evaluation functional for all functions f ∈ H(K,Ω).
Here H(K,Ω) is a Hilbert space of functions on Ω (the reproducing kernel Hilbert space of K) and
〈·, ·〉 denotes the associated inner product. The term native space of K was introduced by Robert
Schaback [130, 131] in the context of radial basis functions.

Many more details on positive definite functions, positive definite kernels and reproducing kernel
Hilbert spaces can be found in most of the books listed in Section 1.

2.3 Examples of Positive Definite Kernels

We now briefly present a kind of dictionary of different types of positive definite kernels. The aim
is by no means to be exhaustive, but to provide a general impression of the various types of kernels
one might consider for different applications. Again, most of the books listed in Section 1 can serve
as a source for many alternate examples (often specialized for certain kinds of applications, such
as radial basis functions, covariance kernels for kriging methods, etc.).

Most of the examples we have chosen to present are closely related to the well-known Gaussian
kernel already mentioned in (1).

Example 1 (Radial kernels). Much of the work on positive definite kernels in approximation theory
(and also much of the work of Robert Schaback) has focused on so-called radial basis functions. In
other fields such as probability theory and statistics such kernels are usually referred to as isotropic.
These kernels are rotationally (and also translationally) invariant, i.e., their level curves (or more
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generally level hyper-surfaces) are circles (hyper-spheres) and they can be expressed in terms of a
univariate function κ : R+

0 → R of a non-negative scalar variable, i.e.,

K(x, z) = κ(‖x− z‖), x, z ∈ Rd,

where ‖ · ‖ is some norm on Rd – usually the Euclidean norm. A typical example of a radial (or
isotropic) kernel is the multivariate Gaussian

K(x, z) = κ(‖x− z‖) = e−ε
2‖x−z‖2 , κ(r) = e−ε

2r2 , (2)

whose graph is shown in Figure 7a for the case d = 2 with center z placed at the origin. The
parameter ε appearing in the definition of the kernel goes by many different names. We will refer
to it as the shape parameter as is customary in the radial basis function literature, but other terms
such as scale parameter, width, or (reciprocal of the) standard deviation (such that 1

ε2
= σ2, the

variance) are frequently encountered in the literature.

(a) Isotropic Gaussian kernel with shape param-
eter ε = 3.

(b) Anisotropic Gaussian with shape parameters
ε1 = 3, ε2 = 9.

Figure 7: Two-dimensional, x = (x1, x2), Gaussian kernel centered at the origin z = (0, 0).

Example 2 (Translation invariant kernels). It is quite common to relax the symmetry requirements
on the kernel somewhat and demand that it still provides translational (but no longer rotational) in-
variance. Such kernels are frequently called stationary kernels, especially in the statistics literature.
This nomenclature is a little unfortunate (or the definition of stationarity chosen by approximation
theorists is) since the word stationary has its own specific meaning in the study of convergence
rates of approximation schemes using scaled approximation spaces (see, e.g., the discussion in [38]).
A translation invariant kernel can be expressed in terms of a multivariate function K̃ : Rd → R of
a single d-dimensional variable, i.e.,

K(x, z) = K̃(x− z), x, z ∈ Rd.

A standard example of a multivariate anisotropic translation invariant kernel is provided by the
tensor product of univariate translation invariant kernels:

K(x, z) =

d∏
`=1

K̃`(x` − y`), x`, y` ∈ R,
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where the one-dimensional kernels K̃` : R→ R, ` = 1, . . . , d, could all have different shape param-
eters. A typical example is given by the anisotropic Gaussian kernel

K(x, z) =
d∏
`=1

e−ε
2
` (x`−y`)

2
= e
−

d∑̀
=1
ε2` (x`−y`)

2

, K̃(z) = e−z
TEz.

The plot for a two-dimensional anisotropic Gaussian with shape parameter ε1 = 3 in the x1-direction
and ε2 = 9 in the x2-direction is shown in Figure 7b.

Note that one could also interpret the anisotropic Gaussian as a radial kernel provided the norm
‖ · ‖ is not the basic Euclidean norm, but instead a weighted 2-norm of the form ‖z‖E =

√
zTEz

with diagonal matrix E = diag(ε1, . . . , εd). In fact, any symmetric positive definite matrix E could
be used to define an admissible inner product/norm. Clearly, the anisotropic Gaussian becomes
isotropic (2-norm radial) if ε` = ε for all ` = 1, . . . , d.

Example 3 (Zonal kernels). As mentioned in Section 2.1, the domain Ω need not be a Euclidean
space Rd. The unit sphere S2 in R3 is a domain that is important for many geophysical applications.
In this case, the analog of a radial kernel is given by a so-called zonal kernel which can be described
in terms of a scalar univariate function κ̃ : [−1, 1] → R of the dot product of two points on the
surface of the sphere, i.e.,

K(x, z) = κ̃(x · z), x, z ∈ S2.

The analogy to the radial formulation is provided by the fact that the geodesic distance δ, i.e.,
the shortest distance measured along a great circle arc, between two points x, z ∈ S2 is given by
δ(x, z) = arccosx · z.

If we express the Gaussian kernel in terms of the geodesic distance, we obtain a spherical
Gaussian

K(x, z) = e−2ε(1−x·z),

i.e., κ̃(t) = e−2ε(1−t). The graph of such a spherical Gaussian kernel with shape parameter ε = 9
centered at the point z = 1√

3
(1, 1, 1) ∈ S2 is shown in Figure 8a.

We also remark that the Euclidean distance (which cuts straight through the sphere) and
the geodesic distance δ (which measures distance along the surface of the sphere) are linked by

‖x − z‖ =
√

2− 2x · z = 2 sin δ(x,z)
2 . This relation can be used to define restricted Euclidean

kernels that were referred to as “poor man’s” spherical kernels in [38]. This setting has recently
been carefully studied in [56] and applied to various two-dimensional manifolds embedded in R3.
It should be noted that this kind of restricted kernel will in general no longer be zonal in terms of
the underlying Riemannian metric of the manifold.

Example 4 (Multiscale kernels). Roland Opfer developed the idea of so-called multiscale kernels
in his Ph.D. thesis [112] under the direction of Robert Schaback (see also [113]). Such kernels are
given by linear combinations of shifts and scales of a single compactly supported kernel ϕ, i.e.,

K(x, z) =
∑
j≥0

λjKj(x, z) =
∑
j≥0

λj
∑
k∈Zd

ϕ(2jx− k)ϕ(2jz − k).

As a consequence, these kernels have wavelet-like properties and are well-suited for applications
such as image compression with the advantage that these new multiscale kernels need not be placed
at points x, z of a regular grid.
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(a) Spherical Gaussian with shape parameter
ε = 9 and z = 1√

3
(1, 1, 1).

(b) Piecewise linear multiscale kernel centered
at z = (0, 0).

Figure 8: Spherical Gaussian and piecewise linear multiscale kernel.

A typical multiscale kernel can be formed by starting, e.g., with the piecewise linear kernel

ϕ(x) =

d∏
`=1

(1− x`)+,

where

(x)+ = max(x, 0) =

{
x, if x > 0,

0, otherwise

is the cut-off function. Using four levels (j = 0, 1, 2, 3) and dyadic weights λj = 2−2j we get

K(x, z) =
3∑
j=0

2−2j
∑
k∈Z2

ϕ(2jx− k)ϕ(2jz − k)

whose graph is displayed in Figure 8b for z = (0, 0).

Example 5 (Power series kernels). Barbara Zwicknagl’s Diplom thesis [159] under the guidance
of Robert Schaback led to the development of so-called power series kernels on Ω = (−1, 1)d (see
also her presentation [160] at the Göttingen workshop). They are of the form

K(x, z) =
∑
α∈Nd0

wα
xα

α!

zα

α!
,

where the coefficients wα need to satisfy the summability condition
∑
α∈Nd0

wα
α!2

<∞.
A simple example is provided by the exponential kernel

K(x, z) = ex·z =

∞∑
n=0

1

n!
(x · z)n =

∑
α∈Zd

1

|α|!

(
|α|
α

)
xαzα

of which two instances are plotted in Figure 9. In Figure 9a K is centered at the point z = (1
2 ,

1
2),

while in Figure 9b the center is given by (3
4 ,

3
4). Note that this kernel is not translation invariant.
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Similar (finite) polynomial or infinite power series kernels of the dot product type frequently arise
in the machine learning literature.

In [159] the power series kernel

K(x, z) =
∑
α∈Nd0

(2ε2)|α|

α!
xαzα (3)

was used to derive an alternative proof of the spectral convergence order of the Gaussian kernel
(see Section 5.1) by using a decomposition of the Gaussian of the form

e−ε
2‖x−z‖2 = e−ε

2‖x‖2K(x, z)e−ε
2‖z‖2 ,

where K is the special kernel of (3).

(a) Kernel centered at z = ( 1
2
, 1
2
). (b) Kernel centered at z = ( 3

4
, 3
4
).

Figure 9: Exponential power series kernels.

We will return to series expansions of positive definite kernels in Section 6 when we expand a
kernel in terms of its orthogonal eigenfunctions.

Example 6 (Other general kernels). Kernels K : Rd × Rd → R of the most general type, i.e.,

K(x, z), x, z ∈ Rd,

are also common in the literature. One of the best-known examples may be the Brownian bridge
product kernel

K(x, z) =
d∏
`=1

(min{x`, y`} − x`y`) .

Two instances of this kernel are plotted in Figure 10; K is centered at (1
2 ,

1
2) in Figure 10a and at

(3
4 ,

3
4) in Figure 10b. Clearly, this kernel is not translation invariant. In contrast to the other exam-

ples listed above, the Brownian bridge kernel satisfies zero boundary conditions on the boundary of
the unit cube. This kernel is sometimes used to simulate stochastic processes driven by Brownian
motion with zero boundary conditions arising in finance applications (see, e.g., [111]).
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(a) Kernel centered at z = ( 1
2
, 1
2
). (b) Kernel centered at z = ( 3

4
, 3
4
).

Figure 10: Brownian bridge tensor product kernels.

2.4 Misconception I

The fundamental work of Bochner [11], and subsequently Schoenberg [142], on the characterization
of positive definite radial functions in terms of completely monotone functions, i.e., functions whose
derivatives satisfy the alternating sign property

(−1)`f (`)(r) ≥ 0, r > 0, ` = 0, 1, 2, . . . ,

has played an important role in the development of both the theory and application of radial
basis functions. However, as sometimes happens in mathematics – especially when one does not
pay careful attention to the hypotheses of a theory, and remembers facts only as sound bites –
unfortunate misconceptions may arise. In the case of positive definite radial functions many people
may have associated the Bochner/Schoenberg characterization with something like

Sound bite 1. “Positive definite radial functions are equivalent to completely monotone functions.”

This is very unfortunate since it probably prevented researchers for quite some time from think-
ing about oscillatory radial basis functions or even compactly supported radial functions since both
phenomena are ruled out by the alternating sign property associated with complete monotonicity.

So when compactly supported radial basis functions were introduced by Robert Schaback [126]
this created quite a stir, and a more careful reading of Schoenberg’s work shows that the above
misconception should be corrected to something more like

Sound bite 2 (Improvement of Sound bite 1). “Functions that are positive definite radial on Rd
for all d are equivalent to completely monotone functions.”

This latter statement is in fact still not completely precise since one also needs to account for
a variable transformation r 7→ r2 (for complete details see [38] or [155]).

Once this important detail was noticed, a number of constructions for compactly supported
radial kernels were suggested (see, e.g., [19, 136, 153] and also the presentation of Armin Iske at the
Göttingen workshop [75]). One typical compactly supported radial kernel, a so-called Wendland
function, is displayed in Figure 11a. We would also like to point out that the d-fold tensor product
Brownian bridge kernel of Example 6 is compactly supported and positive definite in Rd, but not
radial.
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(a) C2 Wendland function κ(r) = (1−r)4+(4r+1)
centered at the origin in R2.

(b) κ(r) = (1 − ε2r2 + ε4r4

6
)e−ε

2r2 , a Laguerre-
Gaussian kernel with ε = 3 centered at the origin
in R2.

Figure 11: Compactly supported and oscillatory radial kernels.

Subsequently, oscillatory radial basis functions were also suggested by various people (see, e.g.,
[45, 48]), and Figure 11b shows a Laguerre-Gaussian function from [45].

We end this section with a quote from the recent survey by Stefano DeMarchi and Robert
Schaback [33] which appeared in this journal:

“new nonstandard kernels [. . .] should get more attention.”

We could not agree more.

3 Kernel Interpolation

3.1 Scattered Data Fitting

In order to get into the more practical aspects of working with positive definite kernels we present

Fundamental Application (The Scattered Data Fitting Problem). Given data (xj , yj), j =
1, . . . , N , with xj ∈ Rd, yj ∈ R, find a (continuous) function sf such that sf (xj) = yj, j = 1, . . . , N .

Traditionally, this kind of problem arises in geophysical applications such as the terrain model
illustrated in Figure 12. The data for this example can be found as the volcano data set in the
statistical software package R [116] and represents real measurements of 5307 elevation measure-
ments obtained from Maunga Whau (Mt. Eden) in Auckland, NZ, obtained on a 10m× 10m grid.
In order to be able to distinguish individual measurements in the plots displayed in Figure 12 we
selected a random (scattered) subset of 10% of the original data points.

The fitting surface is obtained using a linear combination of Gaussian kernels of the form

sf (x) =

N∑
j=1

cje
−ε2‖x−xj‖2 , (4)

where the xj correspond to the N = 530 scattered blue points shown in Figure 12a (normalized to
the unit square), and the unknown coefficients cj are obtained by solving the interpolation equations

sf (xi) = yi, i = 1, . . . , N,
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where the yi correspond to the red elevation measurements shown in Figure 12b together with their
associated data sites xi. A value of ε = 15.605278 was used for this example and was obtained by
leave-one-out cross-validation (LOOCV). A more detailed discussion of algorithms for the selection
of the shape parameter appears below in Section 5.2.

(a) Scattered measurement locations for volcano
data (normalized to the unit square).

(b) Elevation measurements associated with the
locations shown in (a).

(c) Volcano data fitted by a Gaussian kernel in-
terpolant.

(d) Surface of (c) rendered with more realistic
colors.

Figure 12: Illustration of the scattered data fitting problem.

It is probably worth noting that geostatisticians most certainly will prefer to fit this kind of data
using a kriging method based on a kernel which is not nearly as smooth as the Gaussian. Moreover,
such a model will also be designed to account for possible measurement errors. However, this is
not the focus of the current article, so in keeping with our focus on the Gaussian kernel and in the
interest of simplicity we have interpolated the given data using infinitely smooth Gaussians. The
rather large shape parameter obtained for this example by LOOCV indicates that the basis functions
used in (4) are very localized and thus the choice of the Gaussian as kernel for this application is
most likely not an appropriate one. In the recent paper [139] Michael Scheuerer, Robert Schaback
and Martin Schlather investigated this issue and asked the question “Interpolation of spatial data
– a stochastic or a deterministic problem?”. In particular, they made some progress on the issue
of how to decide whether a specific kernel is “correctly chosen” for a given application.

The curious reader may want to compare our interpolated surface to a photograph of Mt. Eden
such as the one that can be found at http://www.teara.govt.nz/en/volcanoes/3/5/2 as well
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as to some of the surfaces presented in [139]. The latter comparison is not really a fair one
since we used 10% of the data, while [139] used only N = 300 points for the interpolation and
reserved the remainder of the data to compute the root mean square error of the interpolant.
It may be surprising that even with the full data set a Gaussian kernel fit (using even narrower
basis functions with an LOOCV-optimal shape parameter of ε = 64.360659) does not match the
photograph as well as the fit obtained in [139] with a more flexible (and less smooth) Matérn kernel
whose variance, smoothness and shape parameters were chosen using either maximum likelihood
or LOOCV estimation.

Problems in geophysical or spatial statistics are only one type of situations to which the scattered
data fitting formulation applies. Another important application arises in the design and analysis
of computer experiments. The book [52] is a good introduction to this topic since its authors
emphasize the use of positive definite kernels in the context of kriging and support vector machine
algorithms. As we will see in Section 8.1, the scattered data fitting method can also be nicely
generalized to the numerical solution of partial differential equations via collocation. Perhaps the
most significant point of the computer experiment and PDE collocation applications for numerical
analysts is the fact that in these cases the data can generally be assumed to be free of measurement
noise, so the above formulation does indeed directly apply.

3.2 The Mairhuber-Curtis Theorem

In [129] Robert Schaback provided the book [16] by Dietrich Braess as a reference for the so-called
Mairhuber-Curtis theorem. Such a theorem, based on the work [94, 31] of John Mairhuber (a student
of Iso Schoenberg’s) and Philip Curtis – both shown in Figure 13 – has been precisely formulated
for the purposes of multivariate scattered data interpolation and proved in, e.g., the book by Holger
Wendland [155]. The implications of the Mairhuber-Curtis theorem can be succinctly summarized
in

Sound bite 3. “The linear function space used for multivariate interpolation should be data-
dependent.”

Figure 13: John Mairhuber (left) and Philip Curtis (right).

We provide an illustration of the proof and implications of this theorem in the movies Mairhu-
berCurtis1.avi and MairhuberCurtis2.avi that are included with this paper. These movies are screen
captures of some explorations performed with a Mathematica notebook that will has been posted
online [40]. A screen shot of the Mathematica module is shown in Figure 14.

In MairhuberCurtis1.avi, the left part of the screen shows nine data sites, xi, i = 1, . . . , 9,
located in the unit square and the right part of the screen shows nine corresponding, but fixed,
basis functions Bj , j = 1, . . . , 9, that happen to be Gaussian kernels. One then sees the mouse pick

14



Figure 14: Screen shot of the Mathematica module used to illustrate the proof and implications of
the Mairhuber-Curtis theorem.

up and interchange the positions of two of the data sites (while the basis functions, which are not
connected with the data sites, remain at their fixed positions). As a consequence, the determinant
of the interpolation matrix with entries Bj(xi) changes sign since we have interchanged two of its
rows. By continuity arguments we can therefore conclude that a configuration of data sites xi
exists for which – for the given and fixed basis – the interpolation matrix is singular, and therefore
the multivariate scattered data problem is not well-posed. This is in contrast to the well-known
univariate situation, where one can always fix a basis (such as polynomials of degree N) to uniquely
interpolate any data specified at a set of N + 1 distinct points on the real line.

The message for multivariate interpolation is therefore the one given by Sound bite 3, and the
fact that a data-dependent basis does indeed “work” is illustrated in MairhuberCurtis2.avi. One
can see that the mode of operation is switched to using a data-dependent basis, and that the basis
functions are no longer fixed since they are directly tied to the data sites via Bj = K(·,xj) with a
Gaussian kernel K. This means that as soon as the mouse moves one of the data sites, the basis
function that is now centered at this point follows along. Furthermore, we can observe that the
determinant of the interpolation remains positive throughout the entire switching of positions, thus
it seems plausible that the matrix K is always non-singular (a fact guaranteed by Definition 2 as
long as K is a positive definite kernel).

Therefore, we will always approach the multivariate kernel-based scattered data interpolation
problem with a data-dependent linear function space that provides an interpolant of the form

sf (x) =
N∑
j=1

cjK(x,xj), x ∈ Ω ⊆ Rd, (5)

where K : Ω × Ω → R is a positive definite reproducing kernel. As already explained above, we
find the coefficients cj by solving the interpolation equations

sf (xi) = yi, i = 1, . . . , N.
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This leads to a linear system Kc = y with symmetric positive definite kernel matrix (or interpolation
matrix) K whose entries are determined by the kernel K, i.e.,

Kij = K(xi,xj), i, j = 1, . . . , N.

In addition to the well-posedness of positive definite kernel-based multivariate scattered data
interpolation just discussed, the theory of reproducing kernels, or more generally that of optimal
approximation or optimal recovery (see, e.g., [59, 129]), provides a number of optimality properties
of the kernel-based interpolant. For example, it has minimum norm in the native Hilbert space
H(K,Ω) among all interpolants from H(K,Ω). Moreover, assuming that the data yi are sampled
from a function f ∈ H(K,Ω), i.e., yi = f(xi), the kernel-based interpolant is the best approximation
of f from H(K,Ω) measured in the corresponding Hilbert space norm. We will not discuss these
properties any further, but instead refer the reader to the original literature or the books [38, 155].
The recent paper [139] of Scheuerer, Schaback and Schlather places these optimality properties
side-by-side with a list of corresponding properties obtained when one views the scattered data
fitting problem from a stochastic Gaussian process point of view, i.e., when one applies kriging
methods.

4 Data-dependent Basis Functions

Up until now we have mostly focused on the positive definite kernel K and the generally infinite-
dimensional Hilbert spaceH(K,Ω) associated with it. However, once we focus on a specific scattered
data fitting problem, i.e., once we fix a finite set (of data sites) X = {x1, . . . ,xN} ⊂ Rd and
an associated data-dependent linear function space H(K,X ) = span{K(·,x1), . . . ,K(·,xN )} as
outlined in the previous section, then it also makes sense to consider different bases for the finite-
dimensional kernel space H(K,X ).

Remark. Throughout this paper we always assume that the data sites have been chosen for us. This
assumption is by no means a natural one since in applications such as the design of experiments
an important part of the problem usually lies in determining a “good” design, i.e., a good choice of
data sites. The error bounds for kernel interpolation given later also depend on the specific choice
of data sites, and therefore a choice that might minimize the error bound is certainly desirable.
If one, however, includes the data sites as variables in the data fitting problem, then one ends up
with a nonlinear problem and we want to avoid that discussion here. In fact, to our knowledge,
a satisfactory theoretical approach to this problem does not yet exist. This is in contrast to the
multivariate integration problem, where so-called low discrepancy point sets have been studied for
a long time. The paper [35] of Robert Schaback with Stefano DeMarchi and Holger Wendland has
provided some initial progress in this direction for kernel-based interpolation.

4.1 Standard Basis Functions

The most common approach used for the solution of the scattered data interpolation problem is to
employ the standard basis

{K(·,x1), . . . ,K(·,xN )}.

In particular, this has led to the widely used radial basis functions of the form K(‖ · −xj‖). The
main criticism of radial basis functions has been rooted in the facts that (1) the kernel matrices
K are often dense matrices, and (2) these matrices are often ill-conditioned. We do not want to
focus on item (1) is this paper, although this is a very important issue and there exist a number of
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approaches (most of them iterative in nature) that address this problem. Instead we want to look
at a few options for dealing with item (2). The recent preprint by Maryam Pazouki and Robert
Schaback [114] is an excellent reference that provides a very nice discussion of this topic.

Figure 15 shows three standard Gaussian basis functions, all translates of the same basic kernel
K(x− z) = e−ε

2‖x−z‖2 to different centers z chosen to lie at a corner, center and edge midpoint of
the unit square, respectively. A value of ε = 3 was used for the plots. The fact that the kernel is
cut off at the edge of the square distorts the fact that all three basis functions are simply translates
of the same kernel.

Figure 15: Standard Gaussian basis functions centered at different points in the unit square.

4.2 Cardinal Basis Functions

In many ways, the ideal basis is given by a Lagrange or cardinal basis. Such functions satisfy the
Lagrange property

u∗j (xi) = δij , i, j = 1, . . . , N, (6)

so that we can find them (in a pointwise sense) by solving the linear system

Ku∗(x) = k(x), (7)

for any given evaluation point x ∈ Rd. Here we again use the kernel matrix K with entries
Kij = K(xi,xj) and the right-hand side vector is given by the standard basis functions, i.e.,
k = [K(·,x1), . . . ,K(·,xN )]T .

If available (such as, e.g., in [18] for polyharmonic splines and multiquadrics on infinite regular
grids) cardinal functions trivialize the interpolation problem since the interpolant can then be
written in the form

sf (x) =

N∑
j=1

yju
∗
j (x), x ∈ Ω ⊆ Rd, (8)

i.e., the interpolation matrix for this basis is an identity matrix by virtue of (6).
Cardinal functions are also very useful for theoretical purposes such as establishing error bounds

for kernel-based scattered data interpolation as was done in the seminal paper [157] by Zongmin
Wu and Robert Schaback. Other work on infinite lattices has been aided by the use of the Poisson
summation formula which enables one to derive explicit representations of cardinal functions. For
the Gaussian kernel this has been done, e.g., in [64], but there is also earlier work in, e.g., [5], and
in [14, 99] one can find so-called approximate cardinal functions for the Gaussian. In [115] cardinal
functions are provided for the Gaussian kernel at a set of points in a bounded interval, i.e., for
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d = 1. If one has an explicit formula for the cardinal functions, then one immediately obtains
information about the Lebesgue constant

ΛK,X = max
x∈Ω

N∑
j=1

|u∗j (x)|,

which in turn provides information about accuracy and stability of a kernel interpolant via

‖f − sf‖ ≤ (1 + ΛK,X ) ‖f − s∗‖,

where s∗ is the L∞-best approximation of f from the finite-dimensional space H(K,X ) and

‖sf‖∞ ≤ ΛK,X ‖y‖∞,

where sf is the kernel interpolant to the data y sampled from f on X so that the norm on the left
is continuous and that on the right discrete. Unfortunately, the cardinal functions and associated
Lebesgue constants are known only for some special cases. Some results on the behavior of the
Lebesgue constant can be found in the paper [34] by Stefano De Marchi and Robert Schaback.

Figure 16 shows three Gaussian cardinal basis functions again identified with a corner, center
and edge midpoint of the unit square, respectively. It is clear that these basis functions are no
longer shifted copies of one single basic function. In fact, cardinal basis functions are inherently
tied to the set X of data sites and the domain Ω. Nevertheless, if many interpolation problems
with the same set X need to be solved, then one might consider precomputing the cardinal basis.
A value of ε = 1 was used for these plots.

Figure 16: Gaussian cardinal basis functions centered at different points in the unit square.

4.3 Newton-type Basis Functions

In the setting of polynomial interpolation it is well known that the Newton form of the basis is
“in-between” the Lagrange form and the monomial basis (which corresponds to our standard kernel
basis) in the sense that the interpolation matrix associated with the Newton form is triangular.

In the field of kernel-based interpolation such a basis was missing for a long time, and only
recently Stefan Müller in his Ph.D. thesis [107] under the direction of Robert Schaback (see also
[108]) discovered such a basis and studied it in detail.

These Newton-type basis functions satisfy a Newton property, i.e.,

v∗j (xi) = δij , 0 ≤ i ≤ j ≤ N.

One of the nice insights recently obtained in [107, 108] (and also [114] as well as Stefano DeMarchi’s
paper [32] in this issue) is the fact that a Newton-type basis can be computed via a pivoted LU-
decomposition of the kernel matrix K. Moreover, the Newton basis provides an orthogonal basis for
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the native Hilbert space H(K,Ω). This latter fact may lead to many new algorithms for the efficient
and stable computation of kernel-based interpolants, some of which have already been introduced
in the papers just mentioned.

Figure 17 shows three Gaussian Newton-type basis functions once again identified with a corner,
center and edge midpoint of the unit square, respectively. Clearly, these basis functions also cannot
be obtained as shifted copies of a single basic function. A value of ε = 3 was used for these plots.

Figure 17: Gaussian Newton-type basis functions centered at different points in the unit square.

5 Accuracy of Kernel Interpolation

5.1 Standard Error Bounds

We now assume that the data yi are sampled from a function f ∈ H(K,Ω), so that yi = f(xi),
i = 1, . . . , N and discuss the error between the kernel interpolant sf and f measured in two different
ways, a pointwise error, which we will discuss in this section, and a weighted L2 error, which we
will discuss in Section 5.4.

The following standard pointwise error bound for reproducing kernel interpolation probably
was introduced into the RBF literature by Zongmin Wu and Robert Schaback in [157]. One can
easily obtain it using the representation of the kernel interpolant sf in terms of the cardinal basis
(8), the reproducing property of the kernel and the Cauchy-Schwarz inequality. In fact, using the
representation u∗(x) = K−1k(x) of the cardinal functions (7) we have that for any x ∈ Ω

|f(x)− sf (x)| =

∣∣∣∣∣∣f(x)−
N∑
j=1

f(xj)u
∗
j (x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣〈f,K(·,x)〉H(K,Ω) −
N∑
j=1

〈f,K(·,xj)〉H(K,Ω)u
∗
j (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣〈f,K(·,x)−
N∑
j=1

K(·,xj)u∗j (x)〉H(K,Ω)

∣∣∣∣∣∣ =
∣∣〈f,K(·,x)− kT (·)K−1k(x)〉H(K,Ω)

∣∣
≤ ‖f‖H(K,Ω)

∥∥K(·,x)− kT (·)K−1k(x)
∥∥
H(K,Ω)

= ‖f‖H(K,Ω)PK,X (x),

with k(·) = [K(·,x1), . . . ,K(·,xN )]T , and where the term

PK,X (x) =
√
K(x,x)− kT (x)K−1k(x)

was called the power function by Robert Schaback in [125].
Another optimality property of the kernel-based interpolant is given by the fact that it minimizes

the pointwise error just introduced (see, e.g., [155]). In the stochastic literature, i.e., kriging,
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Gaussian processes, etc. (see e.g., [52, 117, 146]), the power function appears as the kriging variance
and it turns out that one obtains the best linear predictor of the random field with covariance kernel
K by fitting the samples y1, . . . , yN of a sample path f of the random field by the same interpolation
procedure described in the deterministic setting above. This analogy is also discussed in the recent
paper by Michael Scheuerer, Robert Schaback and Martin Schlather [139].

Figure 18: Michael Golomb (left) and Hans Weinberger (right).

The above error bound can be improved (as was already suggested in [59] by Michael Golomb
and Hans Weinberger, who are shown in Figure 18) to

|f(x)− sf (x)| ≤ ‖f − sf‖H(K,Ω)PK,X (x) (9)

since f−sf is orthogonal (in the Hilbert space inner product) to both f and sf . This latter (tighter)
error bound does not seem to play a significant role in the RBF literature.

Since ‖f‖H(K,Ω) usually is not computable (remember, we do not even know f , but want to
reconstruct it from the data) the standard error bound is not very useful for practical situations.
On the other hand, if we assume that our approximation sf is not too bad, i.e., ‖f − sf‖H(K,Ω) ≤
δ‖sf‖H(K,Ω) for some not too large constant δ, then we obtain a computable error bound

|f(x)− sf (x)| ≤ δ‖sf‖H(K,Ω)PK,X (x) (10)

since it is easy to see that ‖sf‖H(K,Ω) =
√
yTK−1y, where y = [y1, . . . , yN ]T is the vector of data

values:

‖sf‖2H(K,Ω) = 〈yTu∗(·),yTu∗(·)〉H(K,Ω) = 〈yTK−1k(·),yTK−1k(·)〉H(K,Ω)

= yTK−1〈k(·),k(·)〉H(K,Ω)K
−1y = yTK−1KK−1y.

We will come back to the error bound (10) in Section 5.2 when we discuss how to choose a good
value for the shape parameter ε which appears in the definition of many kernels.

In the RBF literature (for a summary of results see, e.g., [38, 155]) the generic error bound
is adapted to specific kernels K and usually expressed in terms of some fill distance or meshsize
h. More recent techniques (see, e.g., the recent survey by Christian Rieger, Robert Schaback and
Barbara Zwicknagl [119] or Christian Rieger’s presentation [118] at the Göttingen workshop) do
not work with the power function, but use so-called sampling inequalities to arrive at similar error
bounds.

Example 7. For well-distributed (quasi-uniform) data we can replace the fill distance h by N−1/d

without affecting the order of an error bound. Then the error bounds for the Gaussian kernel
published in the literature (such as [93, 120, 154]) are of the form

‖f − sf‖∞ ≤ CdN−p/d‖f‖H(K,Ω).
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Figure 19: Screen shot of the Mathematica module used to illustrate effects of the Gaussian shape
parameter.

This can be interpreted in the sense that Gaussian kernels provide arbitrarily high approximation
order to infinitely smooth functions f , i.e., with p = ∞. However, one also sees that the rate of
convergence decreases with increasing dimension, and what is less apparent, the constant Cd grows
with d. This means that such bounds are dimension-dependent and are likely to suffer from the
curse of dimensionality. This may not be of concern for low-dimensional applications such as those
that occur in terms of the three physical dimensions surrounding us. However, if we are dealing
with interpolation problems that arise in a computer experiment, then the number of variables is
likely to be much higher, and dimension-dependence does matter.

5.2 Choosing a Good Shape Parameter

Up until now we have not said much about the shape parameter ε that appears in the definition of
the Gaussian kernel (2). Other kernels have similar shape parameters, and what we are about to
discuss for the Gaussian applies to those kernels in an analogous way.

We begin with the description of another movie, IsotropicGaussianInterpolation.avi, that shows
how the shape parameter affects the basis functions, the condition number of the kernel matrix K
and the accuracy of the kernel interpolant sf . This movie is also a screen capture of explorations
performed with a Mathematica notebook that has been posted online [40]. A screen shot of the
Mathematica module is shown in Figure 19.

The screen shows three plots. The left-most plot displays the data sites and coinciding centers
of the basis functions. Underneath this plot one also can monitor the L2 condition number of the
interpolation matrix K. In the middle plot we see the associated Gaussian basis functions. Both
of these plots are analogous to those in the Mairhuber-Curtis movies. The right-most plot shows
the interpolant sf (in a goldish color) as well as the function f (shown in a partially transparent
blueish color) that we are trying to recover from its samples obtained at the data sites shown in
the left-most plot. In interactive mode, the sliders at the top can be used to change the (common)
shape parameter ε of the basis functions, pick different test functions (which can be parametrized
differently along the x and y-coordinate axes), and switch the right-most plot from the interpolating
surface view to an error view.
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The movie begins with the user decreasing the value of the shape parameter. This has several
consequences:

• The basis functions become wider, or “flatter”.

• The condition number of the matrix K increases.

• The interpolant sf resembles the test function f more accurately.

None of these features were discussed in earlier parts of this paper, but are well-known in the
literature.

About half-way through the movie, the right-most plot is switched to a view that displays
the interpolation error instead of the actual surfaces. This reveals where the error is largest, and
subsequently a few more points are added in the left-most plot. Again, this has a number of
consequences:

• The shape of the basis functions does not change.

• The condition number of the matrix K increases even more.

• The error becomes even smaller.

These latter observations are in line with the error bounds discussed earlier, and the effects on the
condition number are also well known (we will come back to that in Section 7).

Clearly, in addition to sampling the function f at sufficiently many and well-chosen points, an
appropriate choice of the shape parameter is important, and we will now say a few words about
that.

For the longest time, people in the approximation theory and numerical analysis community
went mostly with ad-hoc choices of the shape parameter or ignored its effect by treating it as a
constant. Much more systematic approaches have been suggested in the statistics literature for a
long time (see, e.g., [151] and many other references). In the radial basis community one can find
papers such as [44, 67, 121, 137] that employ some of the methods we are about to explain. An
extended discussion of a “good” shape parameter choice was also included in [38], but we would
now like to add some more recent insights based on [41, 66, 105].

5.2.1 Leave-One-Out Cross Validation (LOOCV)

This method was first proposed in the context of ridge regression or smoothing splines by Allen [1]
and Wahba and collaborators [27, 60], respectively, to find the optimal smoothing parameter µ in
the linear system

(K + µI)c = y.

This system corresponds to a fundamentally different – but closely related – data fitting problem
since the data for this problem are assumed to be contaminated with noise so that one does not
want to interpolate, but instead seeks a smoothed fit.

Rippa [121] used leave-one out cross validation (LOOCV) to select the shape parameter of a
radial basis interpolation system, but everything he did can be transferred to more general positive
definite kernels. The idea behind LOOCV is to split the data into two different sets: the training
set {y1, . . . , y`−1, y`+1, . . . , yN}, and the validation set consisting of only the single y` (which was
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left out when creating the training set). Now, for a fixed ` ∈ {1, . . . , N} and fixed ε, one defines
the partial interpolant

s
[`,ε]
f (x) =

N∑
j=1
j 6=`

c
[`,ε]
j Kε(x,xj)

whose coefficients c
[`,ε]
j are determined by interpolating the training data, i.e.,

s
[`,ε]
f (xi) = yi, i = 1, . . . , `− 1, `+ 1, . . . , N.

In order to measure the quality of this attempt one defines

e`(ε) = y` − s
[`,ε]
f (x`),

which denotes the error at the one validation point x` not used to determine the interpolant. The
“optimal” value of ε is found as

εopt = argmin
ε
‖e(ε)‖, e = [e1, . . . , eN ]T ,

where some norm is used in this minimization problem. Usually the 2-norm is chosen, but Rippa
also discussed (and preferred) the 1-norm.

The important fact recognized by Rippa (and earlier also by Wahba) is that one can compute
the error vector without solving N problems each of size (N − 1) × (N − 1). Instead, everything
can be expressed in terms of the full interpolation matrix Kε, i.e.,

e`(ε) =
c`

K−1
``

,

where c` is the `th coefficient of the full interpolant sf and K−1
`` is the `th diagonal element of the

inverse of corresponding N ×N interpolation matrix Kε.
The generalized cross-validation method of [27] replaces the LOOCV cost function

LOOCV(ε) = ‖e(ε)‖2 =

√√√√ N∑
`=1

(
c`

K−1
``

)2

with

GCV(ε) =

√√√√ N∑
`=1

(
c`

1
N

∑N
j=1 K

−1
jj

)2

=
N‖c‖2

trace(K−1
ε )

=

√
yTK−2

ε y µh (λ(Kε)) ,

i.e., the individual diagonal elements of K−1
ε have been replaced by their averages. The notation

µh(λ(Kε)) denotes the harmonic mean of the eigenvalues of Kε, and the relation ‖c‖2 =
√
yTK−2

ε y
follows immediately from the interpolation system Kεc = y.

5.2.2 Maximum Likelihood Estimation

The recent papers [137, 139] by Michael Scheuerer, Robert Schaback and Martin Schlather pro-
vide a discussion of maximum likelihood estimation (MLE) as it can be applied to kernel-based
interpolation methods. This method rests on a solid statistical foundation.
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We assume that our unknown function f is a realization of a random field Z, itself a collection of
random variables, i.e., Z = {Z(x), x ∈ Ω ⊆ Rd}. This implies that the data yi = f(xi) are viewed
as realizations of the random variables Z(xi), i = 1, . . . , N . Usually we assume that the random
field is Gaussian, i.e., the N -dimensional random vectors Z(x) = [Z(x1), . . . , Z(xN )]T ∈ RN are
normally distributed (or Gaussian distributed), i.e.,

Z(x) ∼ N (µ,K)

with mean µ = [E[Z(x1)], . . . ,E[Z(xN )]]T and covariance matrix

K = (Cov[Z(xi), Z(xj)])
N
i,j=1 .

In simple kriging we further assume that we are working with a zero-mean Gaussian field, i.e.,
µ = 0. Then K(x, z) = Cov[Z(x), Z(z)] = E[Z(x)Z(z)], where K is a positive definite covariance
kernel.

If the probability density for an event for which we observe the data y, given the parameter ε,
is written as ρ(y|ε), then the L(ε|y) characterizes the likelihood of the parameter ε given the data
y.

The (Gaussian) joint probability density function of the vector Z(x) of N random observations
with covariance matrix Kε can be written as

ρ(Z(x)|ε) = ρ(Z(x1), . . . , Z(xN )|ε) =
1√

(2π)N det(Kε)
e−

1
2

(Z(x)−µ)TK−1
ε (Z(x)−µ).

If we evaluate this density function using the data vector y = [y1, . . . , yN ]T we obtain the log-
likelihood function (now for simplicity again assuming µ = 0)

lnL(ε|y) = ln

(
e−

1
2
yTK−1

ε y√
(2π)N det(Kε)

)
= −1

2
ln(det(Kε))−

1

2
yTK−1

ε y + constants.

The best shape parameter ε will be obtained by maximizing this log-likelihood function, since then
observation of the data y is most likely under the assumed stochastic model defined by the family
of covariance kernels Kε parametrized by ε. Alternatively, we can minimize (twice) the negative
log-likelihood function. In order to have a criterion invariant under an additional rescaling of the
kernel in terms of a process variance parameter we can derive (see [66]) the maximum likelihood
criterion

MLE(ε) =
1

N
ln(det(Kε)) + ln

(
yTK−1

ε y
)
.

Alternatively, we could also consider

GMLE(ε) = N
√

det(Kε)
(
yTK−1

ε y
)

= µg (λ(Kε))
(
yTK−1

ε y
)
,

where µg (λ(Kε)) denotes the geometric mean of the eigenvalues of Kε.

5.2.3 Other Shape Parameter Optimization Criteria

Based on the Golomb-Weinberger refined error estimate (10) we can determine a good value of the
shape parameter by minimizing

EB(ε) =

√
yTK−1

ε y‖PKε,X ‖∞,
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Figure 20: Comparison of different criteria to select an “optimal” shape parameter ε in Gaussian
kernel interpolation.

where we compute the max-norm of the power function on a discrete evaluation grid with high
resolution.

We can view GCV and GMLE as being at two ends of the spectrum in terms of the eigenvalues
of Kε: GCV is uses their harmonic mean, and GMLE the geometric mean. Using so-called Hölder
means of the eigenvalues and p-type norms of the coefficient vector this can be generalized giving
rise to a two-parameter family of shape parameter criteria:

Critp,q(ε) =
(
yTK−pε y

)1/p( 1

N

N∑
`=1

λq`(Kε)

)1/q

with GCV = Crit2,−1 and GMLE = Crit1,0. In particular, large eigenvalues are penalized for

positive values of q and small eigenvalues for q < 0. Note also that
(

1
N

∑N
`=1 λ

q
`(Kε)

)1/q
corresponds

to max (λ(Kε)) for q = ∞ and to min (λ(Kε)) for q = −∞. This family of criteria was introduced
in [41]. Figure 20 shows a comparison of different criteria for Gaussian kernel interpolation of the
well-known Franke test function (see, e.g., [38]).

This figure suggests that – at least for this example – all but the Crit2,0 criterion perform
equally well, i.e., they all locate the value of ε for which the actual error (black curve) is minimized.
However, another important feature of RBF interpolation that we have not yet discussed is revealed
by this figure as well: there really is an optimal value of ε. Our earlier observations based on the
interpolation movie seemed to indicate that the error decreases – possibly monotonically – with ε.
This example (and many others in the literature), show this is not so. As claimed (and observed)
earlier, the conditioning of the interpolation matrix deteriorates with decreasing ε. Therefore, we
use a regularization algorithm due to James Riley [122] that is discussed in [39] to stabilize the
computations for small ε. Another, more effective way of dealing with the ill-conditioning of Kε for
small values of ε – actually circumventing this issue – will be discussed in Section 7.

Further investigations of shape parameter and kernel selection are reported in [105].
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Figure 21: Screen shot of the Mathematica module used to illustrate anisotropic Gaussian interpo-
lation.

5.3 Anisotropic Gaussian Interpolation

We have now seen how important it can be to select the single shape parameter of the Gaussian
kernel (2) well.

To illustrate how much more flexibility is introduced by using multiple shape parameters, i.e., a
different parameter for each coordinate direction, we discuss our last movie, AnisotropicGaussian-
Interpolation.avi. We emphasize that here we are interested with anisotropic kernels, i.e., different
shape parameters for different coordinate directions. Another possible way of using multiple shape
parameters would be to use spatially varying shape parameters. Such a strategy has been inves-
tigated by some researchers as well (see, e.g., [51, 105]). As for our other movies, this one is also
a screen capture of explorations performed with a Mathematica notebook that has been posted
online [40]. A screen shot of the Mathematica module is shown in Figure 21.

This movie more or less continues where IsotropicGaussianInterpolation.avi left off. The controls
for this module are slightly refined as they now allow different shape parameters in the x1 and x2-
coordinate directions.

We begin by creating a more anisotropic testfunction, i.e., the frequency of the cosine function
is increased along the x1-direction and decreased in x2. This leads to a very poor surface fit
using the initial nine data samples and relatively “flat” isotropic Gaussian kernels. The error plot
shows that the error is largest along entire “tracks” parallel to the x2-axis. We therefore add more
points in the middle of the domain, parallel to the x1-axis in order to increase the sampling in
this direction with the goal of better capturing the higher frequency effects. As before, adding
more points increases the condition number of K, but this time the error is not reduced markedly.
We therefore change the shape parameters, creating anisotropic basis functions that are narrow in
the x1-direction (i.e., ε1 is increased), and “flatter” in the x2-direction (by decreasing the value
of ε2). This greatly improves the error and as a side-effect also improves the condition number
of K. With these new anisotropic basis functions we no longer need multiple data points along
“tracks” in the x2-direction, so we remove some points and improve the condition number even
further without affecting the error much. Finally, the last segment of the movie shows how poorly
isotropic Gaussians would interpolate the data sampled along the central “track” selected earlier.
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We remark that other point selection procedures might be even more effective for this example.
One might, e.g., use Faure points, a set of well-distributed low discrepancy points frequently used
in quasi-Monte Carlo methods (see, e.g., [58]). These points project roughly equally well in every
coordinate direction.

5.4 Dimension-Independent Error Bounds

As pointed out in Section 5.1, the standard error bounds for interpolation with (isotropic) Gaussian
kernels indicate a dimension-dependent convergence rate. In the recent paper [42] we investigated
function approximation in a weighted L2 sense using both isotropic and anisotropic Gaussian kernels
in Rd and were able to derive dimension-independent error bounds for function approximation using
N function values sampled from f of the form

‖f − sf‖2,ρ ≤ errwc2,ρ‖f‖H(K,Rd) for all f ∈ H(K,Rd),

where the worst case error decays like

errwc2,ρ =

O(N−1/4+δ) for isotropic Gaussians,

O(N
−max( β2

2+β
,1/4)+δ

) for anisotropic Gaussian provided ε` = `−β.

Here δ is an arbitrarily small positive constant and β a possibly large positive constant indicating the
decay of the shape parameters. This shows that we can have dimension-independent convergence
rates both for isotropic and for anisotropic Gaussian kernels K provided the function f comes
from the reproducing kernel Hilbert space of K. The (sufficient) requirement that the shape
parameters decay like `−β translates into the fact that the function f we are trying to recover
is essentially low-dimensional, i.e., the higher dimensions become less and less important (just as
in the anisotropic interpolation movie above, where the contribution of f in the x2-direction was
insignificant). If we have sufficiently fast decay of the shape parameters, then the convergence rate
essentially is arbitrarily high. The dimension-independent convergence rate we can guarantee for
isotropic Gaussians, on the other hand, is rather slow. The fact that we are using finitely many
samples, f(x1), . . . , f(xN ), on the infinite domain Rd is not problematic since the weight function
ρ localizes the domain (see also Section 6.2).

The main tool used to prove these dimension-independent convergence rates is an eigenfunction
expansion of the Gaussian kernel. That is discussed next.

6 Kernel Eigenfunction Expansions

A little over 100 years ago, infinite series expansions of the kernels of what are now called Hilbert-
Schmidt integral operators were independently studied by Erhard Schmidt and James Mercer (see
[140, 101] and also Figure 5). David Hilbert played a central role in this development since Schmidt
was his Ph.D. student and Mercer states that his results were motivated by Hilbert’s work [68].

6.1 Mercer’s Theorem

We define the Hilbert-Schmidt integral operator TK : L2(Ω, ρ) → L2(Ω, ρ) on an open set Ω ⊂ Rd
with weight function ρ (which we will say more about below) by

(TKf)(x) =

∫
Ω
K(x, z)f(z) ρ(z) dz.

27



The operator TK is compact if and only if

∫∫
Ω×Ω

|K(x, z)|2ρ(x)ρ(z)dxdz <∞ (see, e.g., [73]).

If the kernel K is symmetric, then according to Mercer’s theorem we have a series expansion
for the kernel K of the form

K(x, z) =

∞∑
n=0

λnϕn(x)ϕn(z),

where the λn and ϕn are the eigenvalues and L2(Ω, ρ)-orthonormal eigenfunctions of TK , i.e.,

(TKϕn)(x) = λnϕn(x) ⇐⇒ 〈K(x, ·), ϕn〉L2(Ω,ρ) = λnϕn(x),

where

〈ϕm, ϕn〉L2(Ω,ρ) :=

∫
Ω
ϕm(x)ϕn(x)ρ(x)dx = δmn.

6.2 Eigenfunctions for the Gaussian Kernel

In this paper we have focussed most of our examples on the Gaussian kernel. It is fortunate that
in [117, Chapter 4] one can find an eigenfunction expansion for the Gaussian, i.e., for x, z ∈ R we
have

e−ε
2(x−z)2 =

∞∑
n=0

λnϕn(x)ϕn(z), (11)

where

λn =
αε2n(

α2

2

(
1 +

√
1 +

(
2ε
α

)2)
+ ε2

)n+ 1
2

, n = 0, 1, 2, . . . , (12)

ϕn(x) =

8

√
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2ε
α

)2
√

2nn!
e
−
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2−1

)
α2x2

2
Hn

 4

√
1 +

(
2ε

α

)2

αx

 . (13)

The eigenfunctions {ϕn}∞n=0 are given in terms of Hermite polynomials Hn and are (weighted)
L2-orthonormal, i.e., ∫ ∞

−∞
ϕm(x)ϕn(x)

α√
π

e−α
2x2 dx = δmn

with weight function ρ(x) = α√
π

e−α
2x2 . The parameter α that appears in the weight function acts

as a global scale parameter which essentially localizes the infinite domain (−∞,∞) and provides
a length scale that allows us to prove the convergence estimates for function approximation with
finitely many pieces of data on an infinite domain mentioned in Section 5.4.

As mentioned in Example 2, the Gaussian kernel is of product form, and so we can apply the
expansion (11) also in higher dimension with the multi-dimensional eigenvalues and eigenfunctions
being products of the one-dimensional ones.

Figures 22 and 23 provide plots of the first few eigenfunctions of the Gaussian kernel in the
case d = 2. The two different sets illustrate how a different choice of the length scale parameter α
localizes the functions. All eigenfunctions in Figure 23 (corresponding to α = 6) are much more
localized than those in Figure 22 (α = 1) even though the Gaussian kernel itself has a shape
parameter of ε = 3 in both examples.

In the next section we will discuss how the eigenfunction expansion of the Gaussian kernel can
also be used for practical purposes, namely to perform stable calculations with so-called “flat”
Gaussians.
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Figure 22: The first few Gaussian eigenfunctions for ε = 3 and α = 1.

7 “Flat” RBFs and Stable Evaluation

7.1 Misconception II

Before we discuss how to compute with “flat” Gaussians, let us first consider why one might want
to do this, and what happens if we do so with the standard approach as outlined in Section 3. In
fact, let us begin with the latter. It has been a long-held belief that

Sound bite 4. “One can’t have high accuracy and stability at the same time.”

This belief is

1. based on the observations made by countless practitioners,

2. assumed to rest on a rigorous mathematical foundation, the so-called uncertainty principle
due to Robert Schaback [127, 128].

Our experiments reported in Section 5.2 support item (1) since we observed there that as the
basis functions become wider, or “flatter”, the interpolant sf approximates the test function f
more accurately. However, this happened at the cost of an increase in the condition number of
the matrix K. We did not show what happens as the shape parameter is pushed further toward
zero, but the curves marked with symbols in Figure 24 below illustrate this for several typical
interpolation problem.

Item (2), in fact, is a second misconception. One should summarize the uncertainty principle of
Robert Schaback more carefully as something like
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Figure 23: The first few Gaussian eigenfunctions for ε = 3 and α = 6.

Sound bite 5 (Correction of Sound bite 4). “ Using the standard basis, one can’t have high
accuracy and stability at the same time.”

Therefore, there still might be grounds for believing to be able to stably perform scattered data
fitting from the spaces associated with “flat” kernels. We will come back to this question below.
So why would anyone want to do this?

7.2 Interpolation with “Flat” Radial Basis Functions

First, we point out that the results mentioned in this section are limited to radial kernels, or radial
basis functions (RBFs). It was first observed by Bengt Fornberg and his co-workers (see, e.g.,
[36, 50, 83, 84]) that, if one manages to compute stably in the “flat” limit, then the RBF interpolant
actually coincides with a corresponding polynomial interpolant. Several people, including Robert
Schaback, were involved in rigorously proving this [13, 86, 133]. The previous papers all deal with
infinitely smooth radial basis functions. Recently, the case of RBFs with finite smoothness has also
been studied in [145], and in [17], a Diplom thesis under the supervision of Robert Schaback.

One of the most intriguing aspects associated with the polynomial limit of RBF interpolants
seems to be the fact that RBF interpolants are most accurate (for a fixed number N of given
samples) for a positive value of the shape parameter ε. Figure 20 shown during our earlier discussion
on the optimization of the kernel’s shape parameter clearly exhibits a minimum in the interpolation
error (as well as for all the error predictors) distinctly away from zero. The reader, however, needs to
remember that those plots were obtained using standard kernel interpolants. The fact that we used
a regularization algorithm to stabilize the interpolation system does not avoid the ill-conditioning
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associated with the “bad” standard basis. This regularization merely smoothes matters out a
little. The observation that the interpolation error using infinitely smooth radial kernels – even
when computed with a stable basis – is still minimized for a positive value of the shape parameter
would imply that radial basis function interpolants are more accurate than polynomial interpolants
(see, e.g., Figure 24). However, polynomials are the basis of traditional algorithms (usually referred
to a spectral methods) for the numerical solution of equations whose solution is known to be smooth.
We will come back to this point in Section 8.1 in the context of partial differential equations.

7.3 Stable Computation with “Flat” Radial Basis Functions

A number of approaches have been suggested for overcoming the limitations of the uncertainty
principle. Clearly, the problem lies in the choice of basis used to represent the finite-dimensional
kernel space H(K,X ) = span{K(·,x1), . . . ,K(·,xN )} employed in the solution of the scattered
data fitting problem.

Since piecewise polynomial splines of degree m correspond to a certain type of (conditionally)
positive definite kernel, we can get some guidance from the spline literature in which it has been
known for a long time that B-splines provide a stable basis for the space spanned by the ker-
nels | · −xj |m+ , where (·)+ is the cut-off function as before. Therefore, a better basis for H(K,X )
needs to be found since the standard kernel basis is often unstable. Some work in this direction
was reported in [6] for polyharmonic splines, the most direct generalization of piecewise polyno-
mial splines. Other approaches for stable computation have come from Bengt Fornberg and his
co-workers such as the Contour-Padé algorithm of [50] and the RBF-QR algorithm of [47, 49].
Alternatively, Robert Schaback and co-workers have recently suggested the use of Newton basis
functions whose computation can be coupled with a selection of “good” interpolation points (see,
e.g., [33, 108, 114]).

The two papers [47, 49] inspired the work in [43], where a truncation of the Gaussian eigenfunc-
tion expansion (11) was used to develop two different algorithms. The first algorithm was inspired
by [49] and truncates the (infinite) eigen-decomposition of the kernel interpolation matrix K in
such a way that this truncation is accurate to within machine precision. Here one ends up using
M > N eigenfunctions to represent the N ×N kernel matrix K. The value of M can be estimated
based on the exact knowledge of the eigenvalues of the Gaussian kernel (12) and their fast decay.
In Figure 24 the interpolation errors over a range of shape parameter values for this algorithm
(QR, solid lines) are compared to those of the standard method (Direct, lines with symbols) and
corresponding polynomial interpolants (horizontal lines). The test problems used 10, 20 and 30
samples, respectively, taken at appropriately scaled Chebyshev points from the 1D test function
f(x) = sinh(x)/(1 + cosh(x)).

One can make the following observations:

• The standard (Direct) RBF method suffers from the ill-conditioning associated with suffi-
ciently small values of the shape parameter ε as predicted by the uncertainty principle.

• The RBF interpolant computed stably with the RBF-QR algorithm converges to the polyno-
mial interpolant of degree N − 1 at the same set of N Chebyshev points.

• The “optimal” choice of shape parameter is positive, and leads to an interpolation error that
is significantly smaller than the one for the corresponding limiting polynomial interpolant.

Since the statistical techniques of Section 5.2 all led to criteria involving the kernel matrix K (or
its discrete eigenvalues) there still remains work to be done in adapting these criteria to the stable
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Figure 24: Illustration of spectral accuracy achievable with the RBF-QR interpolation algorithm
on Chebyshev points.

evaluation techniques just mentioned, but it should be possible to couple the two approaches to
obtain stable and highly accurate Gaussian kernel interpolants.

The second algorithm from [43] uses far fewer eigenfunctions of the Gaussian kernel K than
data values. This argument is again justified by the fast decay of the eigenvalues. The value of M is
chosen depending on the value of ε and α, the global scale parameter of the weight function ρ that
shows up in the formulas for the eigenvalues and eigenfunctions of the Gaussian. This algorithm is
similar in spirit to a truncated SVD and was called RBF-QRr (for regression) in [43].

In Figure 25 we compare the approximation errors over a range of shape parameter values for
the RBF-QRr algorithm with those of the standard method (Direct, lines with symbols). The
test problems used here were generated by sampling the fifth degree polynomial f(u, v, w, x, y) =
1 + (u+ v + w)2(x− y)2(u+ x) in five variables, i.e., d = 5, at various sets of Halton points. The
dimension of the space of degree 5 polynomials in five variables is 252, so it is not surprising that
N = 200 points are not enough to recover the polynomial from its samples. However, using more
samples, we can see that the RBF regression fit is able to recover the polynomial to within machine
precision provided the shape parameter ε is sufficiently small.

8 Other Applications

8.1 Numerical Solution of Partial Differential Equations

One of the greatest application area of so-called meshfree methods is to the numerical solution of
partial differential equations (PDEs). A seemingly endless alphabet soup of acronyms for different
methods exists in the literature, such as EFG, hp-clouds, MLPG, MLS, PUFEM, RKPM, SPH,
and XFEM (for more see, e.g., [102]). Some of these methods are closely related to positive definite
kernels (such as MLPG, RKPM and SPH), others not so much (such as EFG, MLS and XFEM).
For a relatively recent survey of many of these methods see [110].

We will briefly discuss some developments in the numerical solution of elliptic PDEs via a
collocation or strong form kernel-based approach. There are essentially two different alternatives
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Figure 25: High-accuracy approximation of a 5D polynomial using the RBF-QRr approximation
algorithm on Halton points.

proposed in the literature: (1) non-symmetric collocation, and (2) symmetric collocation. The non-
symmetric approach was first proposed by Ed Kansa [77, 78] and has been extremely popular with
many researchers, while the symmetric approach has been attributed to [37, 156]. Both methods
are discussed in detail in, e.g., [38].

Taking a simple Poisson equation

∇2u(x) = f(x), x ∈ Ω,

u(x) = g(x), x on ∂Ω,

the non-symmetric method assumes that the approximate solution is expanded in the form

û(x) =
N∑
j=1

cjK(x,xj),

where the xj , j = 1, . . . , N , are so-called collocation points distributed both in the interior of Ω
and along its boundary. For the symmetric method one assumes

û(x) =

NI∑
j=1

cj∇2
ξK(x, ξ)|ξ=xj +

N∑
j=NI+1

cjK(x,xj),

where NI denotes the number of collocation points in the interior of Ω. As a result, when one forms
a linear system for the determination of the unknown coefficients cj by “interpolating the PDE and
its boundary condition” at the collocation points, then in the non-symmetric case one obtains a
non-symmetric system matrix consisting of two blocks of the form[ (

∇2K(x,xj)|x=xi

)NI ,N
i,j=1

(K(xi,xj))
N,N
i=NI+1,j=1

]
, (14)
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while for the symmetric method one obtains a symmetric matrix consisting of four blocks of the
form 

(
∇2
x∇2

ξK(x, ξ)|x=xi,ξ=xj

)NI ,NI
i,j=1

(
∇2
xK(x,xj)|x=xi

)NI ,N
i=1,j=NI+1(

∇2
ξK(xi, ξ)|ξ=xj

)N,NI
i=NI+1,j=1

(K(xi,xj))
N
i,j=NI+1

 . (15)

Robert Schaback has been instrumental in providing a theoretical foundation for the well-posedness
and error analysis of both the non-symmetric and symmetric collocation methods. Moreover, he has
proposed several efficient algorithms for the practical implementation of these methods. Together
with Carsten Franke, his Ph.D. student at the time, he established a convergence theory for the
symmetric collocation approach [53, 54]. A few years later, together with Benny Hon, he provided
a set of carefully selected and executed numerical examples which demonstrated that – contrary
to the case of scattered data interpolation – there exist sets X of collocation points which lead to
a singular collocation matrix (14) (for the symmetric case Zongmin Wu established nonsingularity
of the collocation matrix (15) in [156]).

We have already seen that some positive definite kernels such as the Gaussian provide spectral
rates of approximation. Polynomials also have this property, and this has led to the development
of so-called pseudospectral methods (see, e.g., [46, 149]) for the numerical solution of PDEs. Since
one can introduce differentiation matrices into the non-symmetric collocation approach in the same
way as for polynomial methods, kernel-based collocation can also be formulated as a pseudospectral
collocation method (see [38]). This is one of the main reasons why the non-symmetric collocation
approach is very attractive for use in applications. However, the counterexamples of [69] presented
somewhat of a discouragement for people to use this approach. On the other hand, the discussion in
Section 7 on “flat limits” and the insight gained in the corresponding literature [13, 36, 50, 83, 84,
86, 133] show that there is not only a formal connection between RBF collocation and polynomial
spectral methods, but that one should in fact interpret RBF collocation as a generalization of
polynomial spectral methods with more flexibility to deal with problems in complex domains (both
with complicated shapes and in high space dimensions) and with the potential for higher accuracy
than their polynomial counterparts.

This great potential for practical applications has spurred a series of papers by Robert Schaback
and co-workers [70, 85, 89, 132, 134] in which the authors have succeeded in providing a firm
theoretical framework for the well-posedness and high accuracy of the non-symmetric collocation
approach. As a by-product, a framework for the solution of more general operator equations –
both in strong form as well as in weak form – have recently emerged [134]. Among other things,
this provides a theoretical foundation for the “meshless local Petrov-Galerkin” (MLPG) method
for which we listed two books in the introduction.

So far, the discussion has focussed on elliptic PDEs. Of course, many applications are dynamic
in nature and will therefore either be of the parabolic or hyperbolic type. While the seminal
paper by Kansa [78] already used a kernel-based approach to solve time-dependent PDEs of both
types, there are only very few papers that discuss convergence and stability of the solution of
time-dependent PDEs with a kernel-based approach. One such paper is the recent preprint [71]
by Benny Hon and Robert Schaback in which they gave the equivalent of a CFL condition [26]
(see also Figure 26) for the solution of the standard heat equation with a method of lines approach
that uses positive definite kernels for the spatial discretization and an Euler method in time. The
kernel-based CFL condition mirrors that for standard finite-difference methods and requires that
the time step ∆t satisfies ∆t ≤ C(∆x)2, where C is some positive constant and ∆x denotes the
spacing of equidistant spatial collocation points.

The solution of ill-posed problems by kernel-based methods has received relatively little attention
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Figure 26: Left to right: Kurt Friedrichs, Richard Courant and Hans Lewy.

(see, e.g., [25]). However, in [132] Robert Schaback provides a theoretical foundation for the
numerical solution of a certain class of such problems. The solution of nonlinear PDEs with kernel-
based methods is discussed in the presentation of Klaus Böhmer at the Göttingen workshop [12].

8.2 A Very Brief Discussion of Other Applications

As already alluded to in the introduction, positive definite kernels play a role in many other appli-
cation areas. The books listed in the introduction provide a much richer source of information on
these topics.

We referred to the scattered data fitting problem as the fundamental application. As already
mentioned there, applications arise in many different areas of numerical analysis, statistics and en-
gineering. For example, Michael Scheuerer’s presentation at the Göttingen workshop [138] focusses
on the stochastic perspective for data fitting. In the literature on computer experiments (see [63] for
recent work using a multilevel kernel-based interpolation algorithm with the compactly supported
Wendland functions of Section 2.4) and other engineering experiments one increasingly encounters
models based on positive definite kernels, RBFs or kriging. One such topic is response surface
modeling (see, e.g., [100]). Other types of applications that boil down to data fitting are rapid
prototyping (see, e.g., [22]) and computer graphics (see, e.g., [87]). Here one often uses implicit
surface models to approximate or interpolate point cloud data.

Machine learning or statistical learning is another area that very heavily relies on positive
definite kernels. Algorithms such as support vector machines are used in many different applications
such as medical diagnostics and text analysis. The presentation of Ding-Xuan Zhou at the Göttingen
workshop [158] has its roots in statistical learning applications.

In the previous subsection we briefly talked about PDEs. Much work has been focussed on the
use of positive definite kernels (or conditionally positive definite kernels, such as the multiquadric)
for the numerical solution of PDEs.

Applications of positive definite kernels in various other branches of mathematics are in multi-
variate integration, multivariate optimization and in numerical analysis and scientific computing,
where one studies fast, accurate and adaptive algorithms ideally implemented in high-performance
computing environments. Unfortunately, the latter area has up to now received relatively little
attention. Among the few contributions in this direction are [6, 61].

9 The Future

So where are the developments in this field likely to go in the near future? For one thing, hopefully
there will be more interaction between different fields, such as approximation theory, statistics,
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learning theory and engineering. Some conferences in recent years have been organized with this
as one of their goals – and Robert Schaback has been present at most of them.

The recent paper [139] by Michael Scheuerer, Robert Schaback and Martin Schlather provides
an excellent overview for someone who wants to see some of the connections between approximation
(the RBF approach) and statistics (the kriging method). Many more such collaborations are needed.
For example, numerical analysts can benefit from the knowledge of statisticians for the estimation
of parameters and calibration of models. The choice of a “correct” kernel and its “correct” scale
is still a major unknown in the numerical analysis world. On the other hand, statisticians may be
able to benefit from the numerical analysis community when it comes to issues such as efficient
algorithms and preconditioning.

High-dimensional problems are ubiquitous in statistical learning and in complexity theory, but
the numerical analysis community has not focussed on such problems. Most convergence results and
also many algorithms focus on the cases of d = 1, 2, 3 dimensions. However, as pointed out earlier,
there are many important applications in the fields of computer experiments, response surface
modeling and in finance which naturally “live” in high-dimensional spaces. Working successfully
with such applications will most certainly involve nonstandard kernels such as anisotropic kernels,
or kernels on manifolds.

In Section 8.1 we briefly discussed some of the accomplishments toward the numerical solution of
PDEs. However, there remains much more to be done. The solution of time-dependent PDEs with
kernel-based methods is still in its infancy. In particular, the real flexibility of meshfree methods
should come to fruition when they are employed in an adaptive algorithm, where both the location
of the discretization points and the scale of the kernels changes adaptively with time. Moreover,
kernels with spatially varying scales are likely to be needed in the moving point framework. Kernels
with spatially varying scales for static problems have been considered, e.g., by Robert Schaback
together with Mira Bozzini and Licia Lenarduzzi [15] and in [51]. Another area that has to date
received almost no attention is the solution of stochastic PDEs. This area is likely to benefit from
interactions between numerical analysis and statistics.

Finally, kernel-based approximation methods have not entered the scientific computing field in
a decisive manner. There is still much to be accomplished with respect to fast and stable algorithms
that can be efficiently implemented in high-performance computing environments.

10 Robert Schaback

I would like to close this article with a few words about Robert Schaback. As should have become
apparent during the course of this article, Robert Schaback is a researcher who has made many
fundamental contributions at the interface of approximation theory, numerical analysis and com-
puter science. Moreover, he has been a bridge-builder to various other disciplines. To emphasize
this point, here is an excerpt from a poem entitled “The Bridge Builder” by Will Allen Dromgoole
(1900):

”There followeth after me today,
A youth, whose feet must pass this way.
This chasm, that has been naught to me,
To that fair-haired youth may a pitfall be.
He, too, must cross in the twilight dim;
Good friend, I am building this bridge for him.”

This poem also speaks to the many efforts Robert Schaback has spent as an educator who was active
not only in mathematics, but also in teacher education and in the development of computer science
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as an independent discipline at the University of Göttingen. His work with his many PhD students
demonstrates how he has been building bridges enabling “fair-haired youths” to succeed in their
future. For those of us who have not had the privilege of being students of Robert Schaback he has
been a mentor and providing inspiration and motivation in many discussions and communications
with encouragement such as

“Das sollte man mal durchrechnen.”

Finally, Robert Schaback loves the outdoors and is a hiking enthusiast, so that a special issue in
this journal is the fitting place to celebrate his 65th birthday. Happy Birthday, Robert, and many
more healthy, productive and joyful years!

Figure 27: Robert Schaback (back row, 4th from the right) with a group of hiking mathematicians
atop Piz Boe during the 1st Dolomites Workshop on Constructive Approximation and Applications
in 2006.
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[81] Laplace, P. S. de, Suite de Mémoire sur les approximations des formules qui sont fonctions de
très grands nombres. Histoire de lacademie royale des sciences de Paris, Année 1783 (1786),
423–467. Reprinted in [82, Vol. 10, pp. 295–338] http://gallica.bnf.fr/ark:/12148/

bpt6k775981/f304.tableDesMatieres.
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