
4 Solving Systems of Linear Equations

We are interested in numerically solving equations of the form

Ax = b, (1)

where A is a (square) n × n matrix, b is an n-(column) vector and x is a (column)
vector containing the unknowns x1, . . . , xn.

In general, there are two classes of methods:

• Direct methods, such as Gaussian elimination, LU factorization, Cholesky fac-
torization, Doolittle factorization or Crout factorization. These methods theoret-
ically lead to an ”exact” solution of the problem (1) in finitely many steps.

• Iterative methods, such as Jacobi iteration, Gauss-Seidel iteration, SOR, SSOR,
CG. These methods provide an approximate solution to (1).

Another distinction is usually made between full (or dense) matrices and sparse
matrices, i.e., such matrices whose majority of entries are zero. Iterative solvers are
especially well-suited for sparse matrix problems.

4.1 Matrix Algebra

We summarize some of the basic ingredients used in the discussion later on. More
details can be found in the textbook.

Elementary Row Operations:

These operations do not change the solution of a linear system.

1. Ei ↔ Ej : swap equation i with equation j.

2. λEi → Ei, λ 6= 0: replace equation i by a nonzero multiple of itself.

3. Ei + λEj → Ei: add a multiple of equation j to equation i and replace equation
i by the result.

We can represent these basic operations by left-multiplication by so-called elemen-
tary matrices.

1. Permutation matrix

Ex.:

E =

 1 0 0
0 0 1
0 1 0

 swaps rows 2 and 3

2. Ex.:

E =

 1 0 0
0 λ 0
0 0 1

 scales row 2 by λ
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3. Ex.:

E =

 1 0 0
0 1 0
0 λ 1

 adds λ times row 2 to 3

One possible application of elementary matrices is the reduction of an invertible
matrix A to the identity matrix, i.e.,

EmEm−1 · · ·E2E1︸ ︷︷ ︸
=A−1

A = I.

This, in fact, provides an ”algorithm” for computing the inverse A−1 of A:

Use elementary row operations to reduce A to I, and simultaneously apply the
same operations to I, resulting in A−1.

Ex.: Consider

A =

 1 1 1
2 2 5
4 6 8

 , I =

 1 0 0
0 1 0
0 0 1

 .

Then

E1 =

 1 0 0
−2 1 0
0 0 1

 : E1A =

 1 1 1
0 0 3
4 6 8

 , E1I =

 1 0 0
−2 1 0
0 0 1

 ,

E2 =

 1 0 0
0 1 0
−4 0 1

 : E2E1A =

 1 1 1
0 0 3
0 2 4

 , E2E1I =

 1 0 0
−2 1 0
−4 0 1

 ,

E3 =

 1 0 0
0 0 1
0 1 0

 : E3E2E1A =

 1 1 1
0 2 4
0 0 3

 , E3E2E1I =

 1 0 0
−4 0 1
−2 1 0

 ,

E4 =

 1 0 0
0 1 0
0 0 1/3

 : E4E3E2E1A =

 1 1 1
0 2 4
0 0 1

 , E4E3E2E1I =

 1 0 0
−4 0 1
−2/3 1/3 0

 ,

E5 =

 1 0 0
0 1 −4
0 0 1

 : E5 · · ·E1A =

 1 1 1
0 2 0
0 0 1

 , E5 · · ·E1I =

 1 0 0
−4/3 −4/3 1
−2/3 1/3 0

 ,

E6 =

 1 0 0
0 1/2 0
0 0 1

 : E6 · · ·E1A =

 1 1 1
0 1 0
0 0 1

 , E6 · · ·E1I =

 1 0 0
−2/3 −2/3 1/2
−2/3 1/3 0

 ,

E7 =

 1 0 −1
0 1 0
0 0 1

 : E7 · · ·E1A =

 1 1 0
0 1 0
0 0 1

 , E7 · · ·E1I =

 5/3 −1/3 0
−2/3 −2/3 1/2
−2/3 1/3 0

 ,

2



E8 =

 1 −1 0
0 1 0
0 0 1

 : E8 · · ·E1A =

 1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

=I

, E8 · · ·E1I =

 7/3 1/3 −1/2
−2/3 −2/3 1/2
−2/3 1/3 0


︸ ︷︷ ︸

=A−1

.

Remark: This corresponds to a matrix representation of basic Gauss-Jordan elimina-
tion.

Theorem 4.1 For an n× n matrix A the following are equivalent:

1. A−1 exists, i.e., A is nonsingular.

2. det A = |A| 6= 0.

3. rowspace(A) = IRn, i.e., the rows of A form a basis for IRn.

4. colspace(A) = IRn, i.e., the columns of A form a basis for IRn.

5. A : IRn → IRn is injective (one-to-one), i.e., for each b ∈ IRn there is a unique
x ∈ IRn such that b = Ax.

6. A : IRn → IRn is surjective (onto), i.e., every x ∈ IRn has an image b = Ax ∈ IRn.

7. Ax = 0 has only the trivial solution x = 0.

8. For any b ∈ IRn, Ax = b has a unique solution.

9. A = EmEm−1 · · ·E1, i.e., A can be factored into elementary matrices.

10. 0 is not an eigenvalue of A.

Proof: Can be found in any standard linear algebra textbook. ♠

Definition 4.2 An n × n matrix A is called positive definite if the quadratic form
xT Ax > 0 for all nonzero x ∈ IRn.

Ex.: Consider

A =

[
2 1
1 1

]
.

Its quadratic form is

[x1 x2]

[
2 1
1 1

] [
x1

x2

]
= [x1 x2]

[
2x1 + x2

x1 + x2

]
= 2x2

1 + x1x2 + x1x2 + x2
2

= (x1 + x2)2 + x2
1 > 0,

provided (x1, x2) 6= (0, 0).
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Remarks:

1. In some books the definition of positive definiteness includes a symmetry require-
ment on A. However, there are matrices that are positive definite in our sense
(and not symmetric).

Ex.:

A =

[
1 2
−2 1

]
.

Its quadratic form is

[x1 x2]

[
1 2
−2 1

] [
x1

x2

]
= [x1 x2]

[
x1 + 2x2

−2x1 + x2

]
= x2

1 + 2x1x2 − 2x1x2 + x2
2

= x2
1 + x2

2 > 0,

if (x1, x2) 6= (0, 0).

2. If A is symmetric and positive definite then all its eigenvalues are positive and
real. This is not so for non-symmetric matrices.

Ex.:

A =

[
1 4
0 1

]
has eigenvalues λ1 = λ2 = 1 > 0,

and its quadratic form is

xT Ax = x2
1 + 4x1x2 + x2

2 = (x1 + x2)2 + 2x1x2,

which is indefinite.

3. We will require symmetric and positive definite matrices for several methods
below to apply.

4. Symmetric positive matrices arise frequently in practice (e.g., in methods based
on energy principles, or in finite difference or finite element methods).

5. Symmetric positive definite matrices have ”weighty” diagonals. To see this, con-
sider

A =

[
a b
b c

]
,

with A positive definite, i.e., xT Ax > 0 for all x 6= 0. Let

x =

[
1
0

]
: xT Ax = a > 0,

x =

[
0
1

]
: xT Ax = d > 0,
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x =

[
1
1

]
: xT Ax = a + 2b + d > 0 =⇒ −b <

a + d

2
,

x =

[
1
−1

]
: xT Ax = a− 2b + d > 0 =⇒ b <

a + d

2
.

Thus, |b| <
a + d

2
, and A has large positive entries on its diagonal. This is also

true for n× n matrices.

6. Any non-symmetric positive definite matrix A can be decomposed into the sum
of a skew-symmetric and a symmetric (positive definite) matrix:

A =
1
2

(
A + AT

)
︸ ︷︷ ︸

symm. pos. def.

+
1
2

(
A−AT

)
︸ ︷︷ ︸
skew-symm.

= S + T.

In general, xT Ax = xT Sx.

Partitioned Matrices

If A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12 B13

B21 B22 B23

]
with matrix blocks Aij and Bij

with compatible block sizes, then

AB = C =

[
C11 C12 C13

C21 C22 C23

]
,

where Cij =
2∑

k=1

AikBkj .

Remarks:

1. This result holds for larger block matrices also.

2. We will make use of partitioned matrices when dealing with some of the algo-
rithms later.

4.2 LU and Cholesky Factorizations

We are interested in solving an n × n system Ax = b. Before we consider the full
problem, we look at some special systems that are particularly easy to solve.

1. Diagonal systems:

A =


a11 0 . . . 0

0 a22
...

...
. . . 0

0 . . . 0 ann

 .

In this case xi = bi/aii, i = 1, . . . , n.
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2. Lower triangular systems:

A =


a11 0 . . . 0

a21 a22
...

...
. . . 0

an1 . . . an,n−1 ann

 .

This kind of system can be solved by forward substitution, i.e.,

x1 = b1/a11, x2 = (b2 − a21x1)/a22, etc.

An algorithm for forward substitution is therefore

Algorithm (Forward Substitution)

for i from 1 to n do

xi =

bi −
i−1∑
j=1

aijxj

 /aii

end

Note that the summation for i = 1 is void, and thus not carried out.

3. Upper triangular systems:

A =


a11 a12 . . . a1n

0 a22
...

...
. . . an−1,n

0 . . . 0 ann

 .

This kind of system can be solved by backward substitution, i.e.,

xn = bn/ann, xn−1 = (bn−1 − annxn)/an−1,n−1, etc.

An algorithm for backward substitution is therefore

Algorithm (Backward Substitution)

for i from n by -1 to 1 do

xi =

bi −
n∑

j=i+1

aijxj

 /aii

end

Note that here the summation for i = n is void.

4. Permuted triangular systems are also easily solved by first applying a permutation
that converts them to a triangular system.
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LU Factorization

Idea: Use elementary row operations to convert A to upper triangular form U , i.e.,

LmLm−1 · · ·L1︸ ︷︷ ︸
=L̃

A = U.

Here the elementary matrices Li, i = 1, . . . ,m, will all be lower triangular matrices. In
a homework problem you will show that L̃ – as a product of lower triangular matrices
– is also lower triangular. Also, you will show that the inverse of a lower triangular
matrix is again lower triangular. Therefore, this results in a decomposition

A = L̃−1U = L︸︷︷︸
lower ∆

U︸︷︷︸
upper ∆

of A.

Why bother with LU factorization? Consider the system Ax = b, and assume we
have computed the decomposition A = LU , i.e., we need to solve

LUx = b.

We now let z = Ux, and the task of finding x becomes a two-stage process:

1. Solve Lz = b for z by forward substitution. According to our earlier discussions,
this is easily done.

2. Solve Ux = z for x by backward substitution, which is just as easily done.

The real advantage of LU factorization comes when we later have to solve another
system with the same matrix A, but different right-hand side b. Then the factorization
can be re-used, and we only need to repeat the simple tasks of forward and backward
substitution. In general, consider solving multiple systems with the same system matrix
simultaneously, i.e., AX = B, where both X and B are n × m matrices. Then we
compute A = LU once, let Z = UX, and perform the two-step process simultaneously
m times:

1. Solve LZ = B for Z by m simultaneous forward substitutions.

2. Solve UX = Z for X by m simultaneous backward substitutions.

Remark: We will see below, that the majority of work is done during the factorization
step, and that substitution is relatively inexpensive.

Theorem 4.3 The n× n matrix A has an LU factorization A = LU with unique unit
lower triangular factor L and unique nonsingular upper triangular factor U if and only
if all leading principal minors of A are nonsingular.

Remark: This theorem is stronger than Theorem 1 in the textbook.
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Proof: The submatrix

A
(k)
11 =


a11 a12 . . . a1n

a21 a22
...

. . .
...

ak1 ak2 . . . akk


is called the k-th leading principal minor of A.

First we show ”=⇒”, i.e., we show all leading principal minors are nonsingular.
Consider A in the following block partitioned form:

A =

[
A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

]
. (2)

Since A has an LU decomposition we can write

A =

[
L

(k)
11 0

L
(k)
21 L

(k)
22

] [
U

(k)
11 U

(k)
12

0 U
(k)
22

]
=

[
L

(k)
11 U

(k)
11 L

(k)
11 U

(k)
12

L
(k)
21 U

(k)
11 L

(k)
21 U

(k)
12 + L

(k)
22 U

(k)
22

]
. (3)

Now, comparing (2) and (3) we see

det
(
A

(k)
11

)
= det

(
L

(k)
11 U

(k)
11

)
= det L

(k)
11︸ ︷︷ ︸

=1

det U
(k)
11︸ ︷︷ ︸∏k

j=1
(U11)jj

6= 0,

since L is unit lower triangular, and U is nonsingular triangular, and the determinant
of a triangular matrix is given by the product of its diagonal elements.

For the proof of ”⇐=” we use induction. The case n = 1 is clear since

A = [a11] 6= 0 =⇒ L = [1], U = [a11].

Now, assume that the claim holds for n, and show that it also holds for n + 1, i.e., we
need to find a unique n×n unit lower triangular matrix L(n) and a unique nonsingular
n×n upper triangular matrix U (n) as well as unique n×1 vectors ` and u and a unique
nonzero scalar η such that

A(n+1) =

[
L(n) 0
`T 1

] [
U (n) u

0 η

]
or

A(n+1) =

[
A(n) b
cT δ

]
=

[
L(n)U (n) L(n)u

`T U (n) `T u + η

]
.

By the induction hypothesis A(n) = L(n)U (n) satisfying the required properties. Let

u = (L(n))−1b,
`T = cT (U (n))−1

η = δ − `T u.
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All three quantities are uniquely determined. Furthermore, η is nonzero since by as-
sumption

0 6= det A(n+1)

= det

[
L(n) 0
`T 1

]
︸ ︷︷ ︸

=1

det

[
U (n) u

0 η

]

= det U (n)η.

By the induction hypothesis det U (n) 6= 0, and so η must also be nonzero. ♠

Derivation of the Factorization Algorithm

We want to have

A =


a11 a12 . . . a1n

a21 a22
...

. . .
...

an1 an2 . . . ann

 =


`11 0 . . . 0

`21 `22
...

...
. . . 0

`n1 `n2 . . . `nn




u11 u12 . . . u1n

0 u22
...

...
. . . un−1,n

0 . . . 0 unn

 ,

so

aij =
n∑

s=1

`isusj =
min(i,j)∑

s=1

`isusj (4)

since `is = 0 for s > i and usj = 0 for s > j. We will construct U row-by-row, and L
column-by-column. We begin with

a11 = `11u11, (5)

i.e., if we fix one of `11 or u11, then the other can be computed from (5). We continue
with

a1j
(4)
=

1∑
s=1

`1susj = `11u1j , j = 2, 3, . . . , n,

which yields the entries in the first row of U as

u1j =
a1j

`11
, j = 2, 3, . . . , n.

Analogously,

ai1
(4)
=

1∑
s=1

`isus1 = `i1u11, i = 2, 3, . . . , n,

which yields the entries in the first column of L as

`i1 =
ai1

u11
, i = 2, 3, . . . , n.

The remainder is obtained recursively, assuming that rows 1, . . . , k−1 of U and columns
1, . . . , k − 1 of L have been determined. Then

akk
(4)
=

k∑
s=1

`ksusk
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=
k−1∑
s=1

`ksusk︸ ︷︷ ︸
known

+`kkukk. (6)

Thus, the diagonal elements `kk and ukk can be determined by fixing one and computing
the other from (6).

To get the remainder of the k-th row of U we consider

akj
(4)
=

k∑
s=1

`ksusj =
k−1∑
s=1

`ksusj + `kkukj , j = k + 1, . . . , n,

which yields

ukj =

akj −
k−1∑
s=1

`ksusj

`kk
, j = k + 1, . . . , n.

The k-th column of L is obtained similarly, i.e.,

aik
(4)
=

k∑
s=1

`isusk =
k−1∑
s=1

`isusk + `ikukk, i = k + 1, . . . , n,

yields

`ik =

aik −
k−1∑
s=1

`isusk

ukk
, i = k + 1, . . . , n.

Remark: These formulas require `kk, ukk 6= 0, k = 1, . . . , n. The choice of one of `kk

or ukk acts as a free parameter. A common choice – in agreement with Theorem 4.3 –
is `kk = 1, k = 1, . . . , n, i.e., L is taken as a unit lower triangular matrix.

Summarizing the above derivation, an algorithm for basic LU factorization is given
by
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Algorithm (Doolittle’s Factorization)

Input A, n

for k from 1 to n do

`kk = 1

for j from k to n do % rows of U

ukj = akj −
k−1∑
s=1

`ksusj

end

for i from k + 1 to n do % columns of L

`ik =

(
aik −

k−1∑
s=1

`isusk

)
/ukk

end

end

Output L, U

Remarks:

1. In the textbook LU factorization is identified with Doolittle’s factorization (com-
pare also Theorem 4.3 above).

2. If we choose ukk = 1, k = 1, . . . , n in the general algorithm, then we obtain
Crout’s factorization.

3. Fixing n other values of L or U may lead to nonlinear conditions (cf. homework
problem 4.2#50).

Cholesky Factorization

Theorem 4.4 If A is a real symmetric positive definite matrix then it has a unique
factorization A = LLT , where L is lower triangular with positive (usually not unit)
diagonal.

Proof: Since A is positive definite A is nonsingular (otherwise there would exist an
x 6= 0 such that Ax = 0).

Also, all k-th order leading principal minors of A are positive definite and therefore
nonsingular. This can be seen by picking x = [x1, . . . , xk, 0, . . . , 0]T .

Therefore, by Theorem 4.3 an LU factorization A = LU of A exists.
Now, A is symmetric, i.e.,

LU = A = AT = (LU)T = UT LT .
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This implies (see homework problem 4.2.1)

U (LT )−1︸ ︷︷ ︸
upper∆︸ ︷︷ ︸

upper∆

= L−1 UT︸︷︷︸
lower∆︸ ︷︷ ︸

lower∆

,

or
U(LT )−1 = D,

with D a diagonal matrix. This is equivalent to U = DLT , and therefore

A = LDLT . (7)

If A is positive definite and L nonsingular, then D is positive definite (see homework
problem 4.2.26). Since a positive definite diagonal matrix must have positive diagonal
entries we have

dii > 0, i = 1, . . . , n.

If we define a new diagonal matrix using the symbolic notation D1/2 =
(√

dii

)n

i=1
, then

A = LD1/2︸ ︷︷ ︸
L̃

D1/2LT︸ ︷︷ ︸
L̃T

.

Since L and U were unique by Theorem 4.3 D is unique, and so is D1/2. Thus the
Cholesky factorization is unique. ♠

Remark: Often the Cholesky factorization is listed in the form given in (7).

Algorithm (Cholesky)

Input A, n

for k = 1 to n do

`kk =

(
akk −

k−1∑
s=1

`2
ks

)1/2

for i = k + 1 to n do

`ik =

(
aik −

k−1∑
s=1

`is`ks

)
/`kk

end

end

Output L

Note: From the algorithm we can see

akk =
k∑

s=1

`2
ks ≥ `2

kj , j ≤ k.
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Therefore
|`kj | ≤

√
akk

which shows that the entries of L are bounded by the (square root of) the diagonal
entries of A. This has a positive effect on the stability of the Cholesky factorization
(more later).

Remark: The Cholesky factorization algorithm is important in practice. The basic
Doolittle (LU) factorization algorithm will be superseded by Gaussian elimination with
pivoting in the next section.

4.3 Gaussian Elimination and Pivoting

We begin with an implementation of basic Gaussian elimination (LU factorization):

Algorithm (Gaussian Elimination)

Input A, n

for k = 1 to n− 1 do % loop over columns

for i = k + 1 to n do % down column k

aik = aik/akk % store multipliers (entries of L) in place of zeros
for j = k + 1 to n do % across row i

aij = aij − aikakj % overwrite A with U

end
end

end

Output A % contains L (except for unit diagonal) and U

Ex.: Consider solving

Ax = b ⇔

 1 2 3
2 1 4
3 4 1


 x1

x2

x3

 =

 1
1
1

 .

The Gaussian elimination algorithm would proceed as follows: 1 2 3
2 1 4
3 4 1

 −→
 1 2 3

2 −3 −2
3 −2 −8

 −→
 1 2 3

2 −3 −2
3 2

3 −20
3

 .

Thus, the factors L and U of A are given as

L =

 1 0 0
2 1 0
3 2

3 1

 and U =

 1 2 3
0 −3 −2
0 0 −20

3

 .

Note: Even though the matrix in the preceeding example is symmetric the Cholesky
algorithm cannot be applied since A is not positive definite.
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Theorem 4.5 If all pivots akk are nonzero then the algorithm listed above produces
Doolittle’s factorization.

Proof: See textbook. ♠

Remark: In order to solve the linear system Ax = b we need another algorithm that
”updates” the right-hand side b and applies backward substitution (see below).

Pivoting

Problems will arise during Gaussian elimination if the diagonal element of A to be
used for the next elimination step is very small compared to the other matrix entries
or even zero.

Ex.: Consider Ax = b with

A =

 6 2 2
2 2

3
1
3

1 2 −1

 b =

 −2
1
0

 .

Without pivoting we obtain the answer x = [1.3333335, 0,−5.0000003]T , whereas with
pivoting we obtain x = [2.6,−3.8,−5]T which is also the exact solution. For more
details please refer to the Maple worksheet 577 LUnew.mws.

Scaled Row Pivoting

One of the most popular methods of dealing with the above mentioned problem is
to introduce scales

si = max
1≤j≤n

|aij |,

i.e., si is the largest element in the i-th row of the original matrix A. These scales are
determined only once.

Before the k-th elimination step we select that row as pivot row whose ratio

|apik|
si

, i = k, . . . , n,

is greatest. Here p = [p1, . . . , pn]T is a permutation vector (initialized with [1, . . . , n]T ).
If at the k-th step row j is selected as pivot row, then the entries pk and pj in p are
swapped. Use of this permutation vector avoids swapping rows in physical memory.

Ex.: Consider again the example

A =

 6 2 2
2 2

3
1
3

1 2 −1

 b =

 −2
1
0

 .

We initialize p as p = [1, 2, 3]T , and compute the scales

s1 = max
1≤j≤3

|a1j | = max{6, 2, 2} = 6,

s2 = max
1≤j≤3

|a2j | = max{2,
2
3
,
1
3
} = 2,

14



s3 = max
1≤j≤3

|a3j | = max{1, 2, 1} = 2.

Now, for k from 1 to n− 1 = 2 we go through pivoting procedure:

k = 1: We begin by determining the pivot row for the first step, i.e., we compute the

ratios
|api1|

si
for i = 1, 2, 3:

|a11|
s1

=
6
6

= 1,

|a21|
s2

=
2
2

= 1,

|a31|
s3

=
1
2
.

Thus, the first row is chosen as the pivot row, and no change to p is required, i.e.,
p = [1, 2, 3]T .

Now we perform elimination as explained in the basic Gaussian elimination algo-
rithm above:  6 2 2

2 2
3

1
3

1 2 −1

 −→
 6 2 2

1
3 0 −1

3
1
6

5
3 −4

3

 ,

where the entries in the (2, 1) and (3, 1) position contain the multipliers mpi1 =
api1

ap11
,

i = 2, 3.

k = 2: We compute the ratios
|api2|

si
for i = 2, 3:

|a22|
s2

=
0
2

= 0,

|a32|
s3

=
5
3

2
.

This time the third row is chosen as the pivot row, and we need to permute entries 2
and 3 of p, i.e., p = [1, 3, 2]T .

Next we perform elimination. Since the multiplier mp32 =
ap32

ap22
=

a22

a32
= 0 there is

no more work to be done, and we can read off the factorization from the matrix 6 2 2
1
3 0 −1

3
1
6

5
3 −4

3

 .

The permutation vector can be converted to a permutation matrix

P =

 1 0 0
0 0 1
0 1 0

 ,
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the multipliers (permuted back) are collected in

L =

 1 0 0
1
6 1 0
1
3 0 1

 ,

and (also permuted back)

U =

 6 2 2
0 5

3 −4
3

0 0 −1
3

 .

Together, we now have a factorization of the form

PA = LU.

Solution Phase

Thus far we have concentrated on the factorization phase. Now we discuss the
solution phase of the algorithm. Let’s consider Ax = b, and – since we have computed
the LU factorization of A with scaled row pivoting – see how to solve the permuted
system PAx = Pb. Making use of the LU factorization we get

LUx = Pb.

As discussed earlier, we approach this problem with a two-step procedure:

1. Solve Lz = Pb, or update b via z = L−1Pb.

2. Solve Ux = z, i.e., do backward substitution.

Note: The previous procedure is summarized in Theorem 3 on page 174 of the textbook.

Ex.: We continue the previous example where

b =

 −2
1
0

 , p =

 1
3
2

 ,

and (after the factorization phase)

A =

 6 2 2
1
3 0 −1

3
1
6

5
3 −4

3

 .

This corresponds to

P =

 1 0 0
0 0 1
0 1 0

 and L =

 1 0 0
1
6 1 0
1
3 0 1

 .

In algorithmic form the update of b (step 1) can be accomplished as

16



for k = 1 to n− 1 do

for i = k + 1 to n do

bpi = bpi − apikbpk

end

end

Thus, we have

k = 1, i = 2 : b3 = b3 − a31b1

= 0− 1
6
(−2) =

1
3
,

i = 3 : b2 = b2 − a21b1

= 1− 1
3
(−2) =

5
3
,

k = 2, i = 3 : b2 = b2 − a22b3

=
5
3
− 0

1
3

=
5
3
,

and therefore the updated b is b = [−2, 5
3 , 1

3 ]T .

The algorithm for the backward substitution (step 2) is given as

for i = n by −1 to 1 do

xi =

bpi −
n∑

j=i+1

apijxj

 /apii

end

This leads to

x3 = b2/a23 =
5
3
/

(
−1

3

)
= −5,

x2 =

b3 −
3∑

j=3

a3jxj

 /a32

= (b3 − a33x3) /a32 =
(

1
3
−
(
−4

3

)
(−5)

)
/
5
3

= −19
5

= −3.8,

x1 =

b1 −
3∑

j=2

a1jxj

 /a11

= (b1 − (a12x2 + a13x3)) /a11

= (−2− (2(−3.8) + 2(−5))) /6 =
15.6
6

= 2.6.

Remark: The complete algorithm can be found in the textbook on pages 171 and 172.
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Operations Count

To get an idea of the efficiency of an algorithm , traditionally, the number of floating
point operations are counted. On older machines multiplication and division were more
expensive than addition and subtraction, so often only so-called ”long operations” were
counted. Today, all operations are roughly equivalent, so we count all floating point
operations (flops).

Remark: Many other factors affect the efficiency of an algorithm. E.g., data move-
ment, fine-tuning to the machines architecture, choice of programming language, ma-
trix size for linear systems, etc. An example of making optimal use of the available
resources for linear algebra problems is to use the program library LAPACK (available
from http://www.netlib.org/). It uses block algorithms and is built on BLAS routines
that are fine-tuned to the computer’s architecture.

We now do an operations count (all flops) for the algorithms on pages 171 and 172
of the textbook. The main idea is to replace for-loops by summation.

Factorization: Since there are two floating point operations in the innermost loop, and
one additional operation in each of the surrounding loops, the operations count for the
factorization algorithm translate into

n−1∑
k=1

1 +
n∑

i=k+1

1 +
n∑

j=k+1

2


=

n−1∑
k=1

1 +
n∑

i=k+1

(1 + 2(n− k))


=

n−1∑
k=1

[
1 + (n− k) + 2(n− k)2

]
= n− 1 +

n−1∑
k=1

(n− k)︸ ︷︷ ︸
(n−1)n

2

+2
n−1∑
k=1

(n− k)2︸ ︷︷ ︸
(n−1)n(2n−1)

6

=
2
3
n3 − n2

2
+

5
6
n− 1 = O(n3).

Updating b: There are only two flops inside the inner loop, thus

n−1∑
k=1

n∑
i=k+1

2 =
n−1∑
k=1

2(n− k) = n2 − n = O(n2).

Backward substitution: Since the summation inside the for-loop involves both addition
and multiplication, we get

1∑
i=n

(2(n− i) + 1) =
n∑

i=1

(2n− 2i + 1) = n2 = O(n2).

So, if we solve m linear systems with the same system matrix A, but m different
right-hand sides b, then we get
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Theorem 4.6 The solution of Ax = b with fixed matrix A and m different right-hand
side vectors b by Gaussian elimination with scaled row pivoting involves approximately
2
3
n3 +

(
2m− 1

2

)
n2 floating point operations.

Proof: We simply add the terms of orders n3 and n2 from the previous three counts:

2
3
n3 -

n2

2
+ mn2

+ mn2

+
2
3
n3 +

(
2m− 1

2

)
n2.

♠
Remark: This shows that applying LU factorization (O(n3)) once with many backward
substitutions (O(n2)) is more efficient than doing a complete Gaussian elimination
(O(n3)) over and over again.

Corollary 4.7 The inverse A−1 of A can be computed in roughly
8
3
n3 operations.

Remark: Don’t compute A−1 to solve Ax = b!

Special Matrices

Definition 4.8 An n× n matrix A is called (strictly) diagonally dominant if

|aii| >
n∑

j=1
j 6=i

|aij |, i = 1, . . . , n.

Theorem 4.9 For diagonally dominant matrices Gaussian elimination (LU factoriza-
tion) requires no pivoting.

Proof: See the textbook. ♠
Remark: For symmetric positive definite matrices Cholesky factorization requires no
pivoting.

Tridiagonal Matrices

A tridiagonal matrix has nonzero entries only on its main diagonal as well as the
first sub- and super-diagonals, i.e., it is of the form

d1 c1 0 · · · 0

a1 d2 c2
...

0 a2
. . . . . . 0

...
. . . . . . cn−1

0 · · · 0 an−1 dn


.

An efficient algorithm for solving tridiagonal linear systems can be found in the text-
book on page 180.
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4.4 Norms and Error Analysis

We are still interested in solving the linear system Ax = b, but now want to focus our
attention on the accuracy and stability of a solution obtained by a numerical method.

We will denote the solution obtained by the computer with x̃, and the exact solution
by x. We therefore have an error e = x− x̃. Since, in general, we don’t know the exact
solution x, we cannot measure e. We can, however, check the residual

r = b−Ax̃ = A(x− x̃).

Intuition suggests that we can hope that a small residual indicates also a small error.

Example: Consider a linear system with

A =

[
1.01 0.99
0.99 1.01

]
and b =

[
2
2

]
.

Then the exact solution is x =

[
1
1

]
.

(a) Assume the computer returns the approximate solution x̃ =

[
1.01
1.01

]
. Then we

determine the error and the residual, respectively, to be

e =

[
−0.01
−0.01

]
and r =

[
−0.02
−0.02

]
.

Thus, everything goes according to our intuition: the residual is small, and so is
the error.

(b) Now assume the approximate solution is x̃ =

[
2
0

]
. Then

e =

[
−1
1

]
and r =

[
−0.02
0.02

]
,

and the small residual no longer is an indicator of a small error.

(c) This time we change the right-hand side b to b =

[
2
−2

]
. Then the exact solution

is given by x =

[
100
−100

]
. If now the approximate solution is x̃ =

[
101
−99

]
, then

e =

[
−1
−1

]
and r =

[
−2
2

]
,

and we have a large residual along with a small (relative) error.
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We observe that (at least for the matrix in this example) there is no apparent
relation between the size of the residual and the size of the error. What’s wrong with
our intuition?

In order to investigate this question further we need to introduce some tool that lets
us measure the ”size” of A as well as its inverse. The appropriate tool is the concept
of a norm of a vector or a matrix.

Definition 4.10 Let V be a vector space. Then a norm ‖ · ‖ : V → IR≥0 must satisfy

1. ‖x‖ > 0 for all x(6= 0) ∈ V .

2. ‖λx‖ = |λ|‖x‖ for any λ ∈ IR, x ∈ V .

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V (the triangle inequality).

Examples of vector norms: Consider a vector x = [x1, . . . , xn]T ∈ IRn. The most
popular vector norms are:

(a) ‖x‖1 =
n∑

i=1

|xi|, the so-called `1-norm,

(b) ‖x‖2 =

(
n∑

i=1

x2
i

)1/2

, the so-called `2-norm (or Euclidean norm),

(c) ‖x‖∞ = max
1≤i≤n

|xi| the so-called `∞-norm (maximum norm, or Chebyshev norm).

It is interesting to consider the corresponding unit ”spheres” for these three norms,
i.e., the location of points in IRn whose distance to the origin (in the respective norm)
is equal to 1. Figure 1 illustrates this for the case n = 2.

Matrix norms:

–1

–0.5

0.5

1

–1 –0.5 0.5 1

–1

–0.5

0.5

1

–1 –0.5 0.5 1

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 1: Unit ”circles” in IR2 for the `1, `2 and `∞ norms.
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Definition 4.11 Let ‖ · ‖ be some vector norm on IRn, and let A be an n× n matrix.
The associated or subordinate matrix norm is defined by

‖A‖ = sup
‖u‖=1

‖Au‖, u ∈ IRn .

Remarks:

1. The notation sup in Definition 4.11 denotes the supremum or least upper bound.

2. An alternate definition of the associated matrix norm is

‖A‖ = max
x∈IRn

x6=0

‖Ax‖
‖x‖

.

3. ‖A‖ can be interpreted as the maximum factor by which A can ”stretch” x.

Theorem 4.12 If V is the vector space of n × n matrices, then ‖A = sup
‖u‖=1

‖Au‖

satisfies properties (1)–(3) of Definition 4.10.

Proof:

(1) Assume A 6= 0. Then A has at least one nonzero column A(j).

Let x = [0, . . . , 0, 1︸︷︷︸
j-th position

, 0, . . . , 0]T ∈ IRn, and note that x is a unit vector.

Then, by Definition 4.11, the definition of the supremum, the choice of x, and
the properties of a vector norm,

‖A‖ = sup
‖u‖=1

‖Au‖ ≥ ‖Ax‖ = ‖A(j)‖ > 0.

(2) Let λ ∈ IR. Then, by Definition 4.11, and the norm property (2) on IRn,

‖λA‖ = sup
‖u‖=1

‖λ Au︸︷︷︸
∈IRn

‖ = |λ| sup
‖u‖=1

‖Au‖ = |λ|‖A‖.

(3) If both A and B are n× n matrices, then

‖A + B‖ = sup
‖u‖=1

‖(A + B)u‖ = sup
‖u‖=1

‖Au + Bu‖

(3) on IRn

≤ sup
‖u‖=1

(‖Au‖+ ‖Bu‖)

HW#4
≤ sup

‖u‖=1
‖Au‖+ sup

‖u‖=1
‖Bu‖ = ‖A‖+ ‖B‖.

♠
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Corollary 4.13 If A is an n× n matrix and x ∈ IRn, then

‖Ax‖ ≤ ‖A‖‖x‖.

Proof: By the definition of a supremum

‖A‖ = sup
‖u‖=1

‖Au‖ ≥ ‖Av‖ =
‖Ax‖
‖x‖

,

where x 6= 0 is an arbitrary vector in IRn and v =
x

‖x‖
is an associated unit vector.

Note that the statement is also true if x = 0. ♠

Examples of matrix norms: Consider an n×n matrix A. The most popular matrix
norms are:

(a) ‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |, the so-called column sum norm (see HW#11),

(b) ‖A‖2 = max
1≤i≤n

|σi|, where σi is the i-th singular value of A (more later, fairly

difficult to compute),

(c) ‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |, the so-called row sum norm.

We now verify that the matrix norm induced by the `∞-norm is indeed given by
the formula stated in (c):

‖A‖∞ = sup
‖u‖∞=1

‖Au‖∞ = sup
‖u‖∞=1

max
1≤i≤n

|(Au)i|.

By interchanging the supremum and maximum we obtain

max
1≤i≤n

sup
‖u‖∞=1

|(Au)i|.

Next, we rewrite the matrix-vector product to get

max
1≤i≤n

sup
‖u‖∞=1

|
n∑

j=1

aijuj |.

Finally, using formula (8) below we obtain the desired result, i.e.,

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |.

We now derive formula (8). Consider

|
n∑

j=1

aijuj | = |ai1u1 + ai2u2 + . . . + ainun|.
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The supremum over all unit vectors (in the maximum norm) is attained if all terms in
the above sum are positive. Therefore, we pick uj = sign(aij). But then we have

sup
‖u‖∞=1

|
n∑

j=1

aijuj | = |ai1|+ |ai2|+ . . . + |ain| =
n∑

j=1

|aij |. (8)

We now return to our analysis of the relationship between the size of the residual
and the size of the error in solving Ax = b. We consider the error

e = x− x̃,

and the residual
r = b−Ax̃ = b− b̃,

where x̃ is the computed solution of Ax = b (and the true solution of some other
problem Ax̃ = b̃).

Now, applying Corollary 4.13 to an arbitrary vector norm,

‖x− x̃‖ = ‖A−1b−A−1b̃‖ = ‖A−1(b− b̃)‖
≤ ‖A−1‖‖b− b̃‖,

i.e.,
‖e‖ ≤ ‖A−1‖‖r‖, (9)

and the absolute error can be bounded by the absolute residual times ‖A−1‖. Thus,
if the norm of the inverse of A is small, then a small residual will indeed be a good
indicator for a small error.

Next we turn our attention to relative errors. Starting from (9), and using Corol-
lary 4.13 again, we obtain

‖e‖ ≤ ‖A−1‖ ‖Ax‖
‖b‖︸ ︷︷ ︸
=1

‖r‖ ≤ ‖A−1‖‖A‖‖x‖‖r‖
‖b‖

⇐⇒ ‖e‖
‖x‖

≤ κ(A)
‖r‖
‖b‖

, (10)

where
κ(A) = ‖A−1‖‖A‖

is called the condition number of A. Thus, if the condition number of A is small, then
a small relative residual will be a good indicator for a small relative error. In other
words, if the condition number of A is large, then small changes in the right-hand side
b may lead to large changes in the solution. This is an unstable situation.

Remark: κ(A) ≥ 1 for any nonsingular matrix A and any matrix norm (see HW#13).

To see the complete relationship between the relative residual and relative error,
we also derive a lower bound for the relative error. Consider

‖r‖‖x‖ = ‖b− b̃‖‖x‖
= ‖Ax−Ax̃‖‖x‖ = ‖A(x− x̃)‖‖x‖
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= ‖Ae‖‖x‖
= ‖Ae‖‖A−1b‖ ≤ ‖A‖‖e‖‖A−1‖‖b‖.

Therefore
1

κ(A)
‖r‖
‖b‖

≤ ‖e‖
‖x‖

. (11)

Remark: Combining (10) and (11) we see that if A is well-conditioned, i.e., κ(A) ≈ 1,
then we have tight upper and lower bounds on the size of the relative error. This
means, for well-conditioned matrices, the relative residual is a good error indicator.
For large κ(A) the gap between the lower and upper bound can be rather large, and
the size of the (relative) residual can no longer be trusted as an error indicator.

Back to our Example:

We can determine the inverse of the matrix A =

[
1.01 0.99
0.99 1.01

]
to be

A−1 =

[
25.25 −24.75
−24.75 25.25

]
.

Now we compute the `∞-condition number of A, i.e.,

‖A‖∞ = max {|1.01|+ |0.99|, |0.99|+ |1.01|} = 2,
and ‖A−1‖∞ = max {|25.25|+ | − 24.75|, | − 24.75|+ |25.25|} = 50,

which leads to
κ∞(A) = ‖A‖∞‖A−1‖∞ = 100.

By (10) and (11) we get
1

100
‖r‖
‖b‖

≤ ‖e‖
‖x‖

≤ 100
‖r‖
‖b‖

,

and large variations (up to a factor of 104) in the relative error are possible. The matrix
A is ill-conditioned.

Remarks:

1. The condition number of A depends on the choice of matrix norm. If someone
mentions the condition number, usually use of the `2-norm is implied. It can be
computed as

κ2(A) =
σmax

σmin
,

where σmax and σmin are the maximum and minimum singular values of A, re-
spectively.

2. For practical purposes there are condition number estimators which do not require
knowledge of A−1 or the singular values of A. An example of such an estimator
is the routine sgesvx in LAPACK.

3. The reciprocal of the condition number can be interpreted as the ”distance” of
A from the nearest singular matrix.
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The relative error and changes in A:

We end our discussion of the condition number by taking a look at how changes in
the system matrix A affect the solution of Ax = b. This point of view is not included
in our textbook.

We are thus interested in solving the linear system Ax = b, but may not have the
exact entries of A available. Instead, we may only have those of Ã, a perturbed version
of A, i.e.,

Ã = A + C,

where C is some matrix containing the contamination of the original matrix A. We let
x̃ be the (exact) solution of Ãx̃ = b.

Now

x = A−1b = A−1Ãx̃
= A−1

(
Ã−A + A

)
x̃

= A−1 (C + A) x̃ = A−1Cx̃ + x̃.

Therefore

‖x− x̃‖ = ‖A−1Cx̃‖

≤ ‖A−1‖‖A‖
‖A‖

‖C‖‖x̃‖

or
‖x− x̃‖
‖x̃‖

≤ κ(A)
‖C‖
‖A‖

. (12)

Remark: Equation (12) implies that – for ill-conditioned matrices – a small perturba-
tion of A may lead to large errors in the solution of Ax = b.

Example: Let

A =

[
1.01 0.99
0.99 1.01

]
and b =

[
2
−2

]
,

so that the exact solution of Ax = b is x =

[
100
−100

]
. Now, with the perturbation

C =

[
−0.01 0.01

0 0

]

we get

Ã =

[
1 1

0.99 1.01

]
,

and we determine x̃, the solution of Ãx̃ = b, to be x̃ =

[
201
−199

]
. Thus, we see that a

(relatively) small change in A has affected a large change in the solution.
If

C =

[
−0.01 0.01
0.01 −0.01

]
,
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then

Ã =

[
1 1
1 1

]
,

and the situation is so bad that Ãx̃ = b has no solution at all.

We give one more bound (without deriving it) for problems whose system matrix
and right-hand side are both perturbed:

‖e‖
‖x‖︸︷︷︸

relative error
in solution

≤ κ(A)

1− κ(A)‖C‖‖A‖

(‖C‖
‖A‖

+
‖r‖
‖b‖

)
︸ ︷︷ ︸
relative errors

in input

,

where C is a perturbation of A (so that Ã = A + C), r = b − b̃ (with b̃ a perturbed
right-hand side), and e = x−x̃ (with x̃ the computed solution of the perturbed problem
Ãx̃ = b̃). This bound holds only if

κ(A)
‖C‖
‖A‖

< 1.

4.5 Iterative Refinement

Consider applying Newton’s method to the function f(x) = b−Ax. If we treat x as a
one-dimensional variable, then f ′(x) = −A, so that

1
f ′(x)

= −A−1.

If we now assume x ∈ IRn and formally apply the same ideas, then Newton’s iteration
becomes

xn+1 = xn −
f(xn)
f ′(xn)

= xn + A−1 (b−Axn) . (13)

Remark: Since f is a linear function, Newton’s method (theoretically) converges – for
any starting value x0 – in a single iteration. However, roundoff errors in the computa-
tion of A−1 usually prevent this from happening in practice.

In order to come up with an algorithm to improve a solution of a linear system
Ax = b with the help of (13) we introduce the following notation:

rn = b−Axn,
en = x− xn,

so that
Aen = A(x− xn) = Ax︸︷︷︸

=b

−Axn = rn.

This implies
en = A−1rn.
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With this notation (13) becomes

xn+1 = xn + A−1rn = xn + en,

and we can suggest the following algorithm:

Algorithm (Iterative refinement)

Solve Ax = b using the LU factorization of A to obtain a starting value x0.

for n = 0, 1, 2, . . . do

Compute the residual
rn = b−Axn.

Compute the Newton update

en = A−1rn

using the LU factorization of A, so that only forward and backward substi-
tution are required.

Update the approximate solution

xn+1 = xn + en.

end

Remark: This procedure is particularly effective for ill-conditioned systems when the
calculation of rn is done in double precision.

Example: See the Maple worksheet 577 IterativeRefinement.mws.
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