ILLINOIS INSTITUTE OF TECHNOLOGY Department of Applied Mathematics and IIT SIAM Student Chapter

Math Weekly Problem Competition

Friday, October 24, 2014

Find all positive integers n such that $2^4 + 2^7 + 2^n$ is a perfect square.

Solution. The only solution is n = 8.

Suppose that $2^4 + 2^7 + 2^n = a^2$. First, consider the case that $n \ge 4$. Then $2^4 = 16$ divides the left side, so 16 must also divide a^2 . Then 4 divides a; let b = a/4, an integer. Factoring out 16 of both sides, letting m = n - 4, we get $16(1 + 8 + 2^m) = 16b^2$, or $2^m = b^2 - 9$. Then $2^m = (b+3)(b-3)$. Then each of b+3 and b-3 must be a power of 2. One can quickly check that the only powers of 2 that differ by 6 are 2 and 8, so b+3=8 and b-3=2. Then $2^m = 8 \cdot 2 = 16$, so m = 4 and n = 4 + 4 = 8.

What about if n < 4? $2^4 + 2^7 + 2^n$ is even since n is positive. Then a^2 is even, so a is also even. Further a^2 is not divisible by 16, so a is not divisible by 4. Therefore a = 2(2c + 1) where c is an integer. Then $2^4 + 2^7 + 2^n = 4(4c^2 + 4c + 1)$. Dividing through by 4, we get $2^2 + 2^5 + 2^{n-2} = 4c^2 + 4c + 1$. Then it must be that $2^{n-2} = 1$, since the other terms are even. Subtracting 1 and then factoring 4 out, we get $2^0 + 2^3 = c^2 + c$, or 9 = c(c + 1). The right side must be even, so there is no solution.

Good Luck! Have fun and enjoy Mathematics!