Friday, March 20, 2015

If a, b, c are positive numbers such that $(1+a)(1+b)(1+c)=8$, prove $a b c \leq 1$.

Solution.

Assume that $(1+a)(1+b)(1+c)=8$, and hence that

$$
1+a+b+c+a b+a c+b c+a b c=8
$$

By the arithmetic-mean-geometric-mean inequality

$$
\begin{aligned}
1=\frac{1+a+b+c+a b+a c+b c+a b c}{8} & \geq \sqrt[8]{1 \cdot a \cdot b \cdot c \cdot a b \cdot a c \cdot b c \cdot a b c} \\
& =\sqrt[8]{a^{4} b^{4} c^{4}}=\sqrt{a b c}
\end{aligned}
$$

from which $a b c \leq 1$ follows easily.

Good Luck! Have fun and enjoy Mathematics!

