Friday, February 27, 2015

Let

$$
a_{n}=\frac{1^{\frac{7}{2}}+2^{\frac{7}{2}}+\cdots+n^{\frac{7}{2}}}{n^{\frac{9}{2}}}
$$

Show that $\lim _{n \rightarrow \infty} a_{n}$ exists and find its value.
Solution. The limit is $\frac{2}{9}$. Write a_{n} in the form

$$
a_{n}=\frac{1}{n}\left[\left(\frac{1}{n}\right)^{\frac{7}{2}}+\left(\frac{2}{n}\right)^{\frac{7}{2}}+\cdots\left(\frac{n}{n}\right)^{\frac{7}{2}}\right]
$$

and recognize this as a Riemann sum for the integral

$$
\int_{0}^{1} x^{\frac{7}{2}} d x=\left.\frac{2}{9} x^{\frac{9}{2}}\right|_{0} ^{1}=\frac{2}{9}
$$

