Friday, February 27, 2015

Let

\[a_n = \frac{1^2 + 2^2 + \cdots + n^2}{n^2}. \]

Show that \(\lim_{n \to \infty} a_n \) exists and find its value.

Solution. The limit is \(\frac{2}{9} \). Write \(a_n \) in the form

\[a_n = \frac{1}{n} \left[\left(\frac{1}{n} \right)^2 + \left(\frac{2}{n} \right)^2 + \cdots + \left(\frac{n}{n} \right)^2 \right], \]

and recognize this as a Riemann sum for the integral

\[\int_0^1 x^2 \, dx = \frac{2}{9} x^3 \bigg|_0^1 = \frac{2}{9}. \]

Good Luck! Have fun and enjoy Mathematics!