## Friday, February 6, 2015

Suppose that $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ are positive real numbers. Show that

$$
\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{n}}{b_{n}} \geq n \quad \text { or } \quad \frac{b_{1}}{a_{1}}+\frac{b_{2}}{a_{2}}+\frac{b_{n}}{a_{n}} \geq n
$$

Solution. The key fact is that each $\frac{a_{i}}{b_{i}}+\frac{b_{i}}{a_{i}} \geq 2$. This is because $x+\frac{1}{x} \geq 2$ for all $x>0$, which is true since this inequality is equivalent to $(x-1)^{2} \geq 0$.

From the fact that each $\frac{a_{i}}{b_{i}}+\frac{b_{i}}{a_{i}} \geq 2$ it follows that

$$
\left(\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\frac{a_{n}}{b_{n}}\right)+\left(\frac{b_{1}}{a_{1}}+\frac{b_{2}}{a_{2}}+\frac{b_{n}}{a_{n}}\right) \geq 2 n
$$

and therefore at least one of the sums in the parentheses is $\geq n$.

## Good Luck! Have fun and enjoy Mathematics!

