Coupling of finite elements discretises ‘SPDE’s
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Abstract

Stochastic centre manifold theory provides novel support for
coarse grained, macroscale, spatial discretisations of nonlin-
ear stochastic partial differential equations such as the exam-
ple of the stochastically forced Burgers’ equation. Dividing
the physical domain into finite length overlapping elements
empowers the approach to resolve fully coupled dynamical
interactions between neighbouring elements. I explore, com-
pare and contrast different methods for coupling the finite
elements. The techniques developed here may be applied to
discretise many dissipative stochastic partial differential and
difference equations.
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Stochastic PDEs are an ideal that possess complex dynamics across
all space and time scales[T]

Spatial discretisations transform stochastic PDEs into a finite set of
stochastic DEs, then

Stochastic centre manifold theory supports discretisation:

resolves subgrid microscale processes to close macroscale;

memory implies one cannot prescribe ‘order parameters’;

subgrid dynamics correlates noise;

irreducible quadratic noise generates mean ‘drift’.

1.1 Stochastic reaction-diffusion for example

Introduction Stochastic reaction-diffusion for example

The stochastic reaction-diffusion equation for u(z,t):

ou 9 _
9 o2 a(u —u’) + od(z,t) (Stratonovich)

How can we resolve such
seething mess on (’)(1)
lengths and times? Say
coarse spatial grid
Ar=h=15.

1.2 Micro SPDE to macro discretisation?

Introduction Micro SPDE to macro discretisation?
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Even linear diffusion is subtle: set & = 0 in above.

Subgrid noise leaks into adjacent elements........ but no memory?

2 Avoid memory integrals

Avoid memory integrals

Methods of singular perturbations and averaging avoid memory inte-
grals at the cost of forming a weak model.

Consider stochastic dynamics (slow manifold) of toy SDE [simavs]|

f=—xy and = —y+z* 2%+ 00(t).
Averaging does not see the noise induced bifurcation (‘drift’).

Most choose parametrisation y = h(x,t) with horrible conse-
quence that slow model has fast memory: & ~ —a3 — oze ' x¢.

(e7txp= [ e ot —7)dr)

A stochastic coordinate tramsform (nothing lost) additionally
parametrises slow z in terms of a ‘true’ slow X [zsimsnf].

Avoid memory integrals

Nothing lost in stochastic coordinate transforn’| (e.g. Arnold 2003)
yRY + X2 42Y2 4 o(1+4Y)e P x o,
X +XY +o0Xe lxo,

results in dynamics
Y R~ Y(—1-2X2%—4do¢), (=Y — 0 quickly)
X~-X-0X¢. (= X is ‘slow’)

All memory integrals go into the location of the stochastic slow man-
ifold, leaving a ‘true’ slow model in X.

Generalising, no memory need be in SPDE model.

But cost is ‘order parameter’ U;(t) # u(Xj,t), the field grid value.

3 Interelement coupling discretises SPDEs
3.1 Divide space into overlapping elements and couple

Interelement coupling discretises SPDEs Divide space into
overlapping elements and couple

ou  0*u 3
a—@—ka(u—u )+ od(z,t)

2http://www.maths.adelaide.edu.au/anthony.roberts/sdenf .html
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Divide space and couple elements with homotopy parameter ~:

wj(Xjx1,t) = yujar (Xj1, ) + (1 —y)u; (X5, 1).

Interelement coupling discretises SPDEs Divide space into
overlapping elements and couple

Such coupling beautifully consistent............ but not self-adjoint.

Self-adjoint coupling Alternatively, replace implied continuity of
derivative at mid-point with the derivative condition

Wi (X 1) = wjn (X5, 1) = (1= ) [uje(Xjt1, 1) — tja(Xj-1,1)]
=7 [r1.0(Xj, 1) — uj1,0(X5, 1))
Then the linear system on the overlapping elements is self-adjoint.

This alternative may give more immediate theoretical support.

Potential: same approach maps fine lattice dynamics to a model
on a coarser lattice............. ... .. ..., needs research.

3.2 Theoretical support based upon a = =~v=0

Interelement coupling discretises SPDEs Theoretical sup-
port based upon a=0c=v=0

In the absence of nonlinearity, noise and coupling, solutions decay
exponentially quickly to piecewise constant on m elements (say).

= there exists an m-D stochastic slow manifold—Boxler (1989) &
Arnold (2003)—in a finite domain of («a, o,7) space.

Parametrised by a measure of field in each element, U;(t).
Valid exponentially quickly, for all time.......... from full transform.
Subgrid fields obtained via pre-solving SPDE in elements.

Although local to v = 0; assume the fully coupled case of v =1 is in
the finite domain............. ... . ... ... ... needs validation.

Theoretical support based upon o« =0 =~ =
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3.3 Represent noise in the local basis

In principle we represent the subgrid fields in each element in the
local orthogonal basis (—7m < 0 < 7):
wj(e,t) = uja(t)
+ wjo(t)sin€ + u;3(t) sin 2|0 + w;4(t) sin 26 + u;5(t) cos 26
N

Then the SPDE becomes the infinite set of SDEs w;, = —Bru; i+ -
for decay rates 0 = 81 < Bo < B3 < -+ - .

Thus u; 1 are approximately the slow variables, and u; for k > 2
the fast decaying variables. In principle, a near identity stochas-
tic coordinate transform exists, u;; ~ Uj;, that makes Uj; = 0
for £ > 2 exponentially quickly attractive, leaving the long term
evolution to be parametrised by Uj 1, or equivalently by the psuedo-
grid-values Uj(t).

Interelement coupling discretises SPDEs Represent noise
in the local basis

In jth element (—7 < 6 < ) expand noise in basis eigenmodes:

P(z,t) = ¢j1(t)
+ ¢j2(t)sind + ¢;3(t) sin 2|0| + ¢;.4(t) sin26 + ¢; 5(t) cos 20

Need to ‘lift" ¢(x,t) into overly-complete, local bases ........ issues.

Computer algebra constructs subgrid fields (part xform)
uj(z,t) = Uj +~ [(0/m)ué + 510/h|6%] U;

e 4oy
+o |:Sin9€h2 * ¢pjo +sin2(fle "n? *d’j,?»]

7\'2 2 7\'2 2
—ao(1—3U7) |sind <e_h2t*> b2+ sin2|0)| <e_4th*> dis| + -




3.4 Full coupling, v =1, gives discrete model

Interelement coupling discretises SPDEs Full coupling, v =
1, gives discrete model

The corresponding evolution An ‘SPDE’ close to original.

Uj ~ 72%52@ +a(U; —U?) +0dja
— 0 [10°050 + 210652 + 1:6°0;3]
+ 3ay [3U;(udU;)? + L(8%U;) (1dU;)? + LU;(82U;)? + & (6°U;)%]
— aa2h2Uj %(ﬁjvge_zét * Qjo+ %(]ﬁj,ge%gt * 03
+ 0(0_5 + a2 Jrv5/2) .
Resolving subgrid = multiplicative noise......... ‘stabilising’ u = 0.

Curses, the o2 term has micro-time memory integrals!

4 Irreducible quadratic memory integrals
4.1 Return to the toy system

Irreducible quadratic memory integrals Return to the toy
system

if=—zy and = —y+z*—2°+00(t).
Coordinate transform shows stochastic slow manifold model is
r=X+ocXe? * P — UQX(Qe_t * —%)(e_t *¢)2 + ...
y=X2+oelxp—20%x (et xg)? £+
with evolution
X=-X?>—0X¢p+202Xpe ' xp+---

Find terms such as ¢e ! x ¢ are irreducible in this approach—they are
their own slow manifold! . ............... must invoke weak models.

4.2 Effective drift and noise ¢e ' x ¢ ~ 1 + %1#

Irreducible quadratic memory integrals Effective drift and

ise i —t ~ Ll L
noise in ge *¢~2—|—\/§1/)

Not only is E[ssM] # deterministic SM, but
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[ et xgdt
:>¢e*t*¢z%+%¢

0] for independent (t),

algebraically emerges.

4.3 Fokker—Planck slow manifold generates drift and noise

Irreducible quadratic memory integrals Fokker—Planck slow
manifold generates drift and noise

The full hierarchy of such quadratic interactions analysed via the de-
terministic slow manifold of Fokker—Planck equations =

Uj%

%#Uj +a(U; - U;)

+0 b0 — (30°6j0 — 7u00j2 — 1:0°¢;3)]

+3a [3U;(u0U;)? + 3 (0%U;) (u6U))* + gU;(6°U;)? + 35 (6°U;)°]
15 3V65h

212
— h2U.
ag T 1672 * 16273

b(t)

Multitude of quadratic interactions generate

‘mean drift’, and

new noise brought up from the microscale.

Conclusion

Methodology closes macroscale discretisations — accounts for
seething mess of microscale noise.

Being based upon coordinate transform, there is an asymptoti-
cally nearby SPDE to what the model SDEs predict.

Avoid memory integrals.

Quadratic noise abstracts drift and effectively new noises from
the microscale.

Computer algebra handles extensive details[]

Lots of open problems.

3http://www.maths.adelaide.edu.au/anthony.roberts/Modelling intro-
duces many of the basic methods—almost all deterministic as yet.
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