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I. Complexity of Numerical Problems

1. Computational problem: approximation of SPDEs, SDEs, . . .

2. Computational means: class A of algorithms.

3. Quality criterion: error and cost of an algorithm.

4. Minimal error and complexity:

e(n) = inf{error(A) : A ∈ A such that cost(A) ≤ n},

comp(ε) = inf{cost(A) : A ∈ A such that error(A) ≤ ε}.
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I. Complexity of Numerical Problems

1. Computational problem: approximation of SPDEs, SDEs, . . .

2. Computational means: class A of algorithms.

3. Quality criterion: error and cost of an algorithm.

4. Minimal error and complexity:

e(n) = inf{error(A) : A ∈ A such that cost(A) ≤ n},

comp(ε) = inf{cost(A) : A ∈ A such that error(A) ≤ ε}.

Leads to

• benchmarks for existing algorithms,

• definition of optimal algorithms,

• construction of new algorithms (sometimes).
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Typical result

e(n) ≍ n−α,

consists of

• upper bound: construction of algorithms An ∈ A such that

∃ c > 0 ∀ n ∈ N :

cost(An) ≤ n ∧ error(An) ≤ c · n−α,

• lower bound: ∃ c > 0 ∀ algorithm A ∈ A ∀ n ∈ N :

cost(A) ≤ n ⇒ error(A) ≥ c · n−α.
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e(n) ≍ n−α,

consists of

• upper bound: construction of algorithms An ∈ A such that

∃ c > 0 ∀ n ∈ N :

cost(An) ≤ n ∧ error(An) ≤ c · n−α,

• lower bound: ∃ c > 0 ∀ algorithm A ∈ A ∀ n ∈ N :

cost(A) ≤ n ⇒ error(A) ≥ c · n−α.

Monographs

Traub, Wasilkowski, Woźniakowski (1988), Novak (1988),

. . . , Plaskota (1996), . . . , Ritter (2000) . . .
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II. Computational Problems for S(P)DEs

SDE

dX(t) = A(t,X(t)) dt + B(t,X(t)) dW (t)

with state space H = R
d and m-dimensional Brownian motion W .
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II. Computational Problems for S(P)DEs

SDE

dX(t) = A(t,X(t)) dt + B(t,X(t)) dW (t)

with state space H = R
d and m-dimensional Brownian motion W .

SPDE

dX(t) =
(
∆X(t) + A(t,X(t))

)
dt + B(t,X(t)) dW (t)

with infinite-dim. state space H and infinite-dim. Brownian motion W .

Solution X = (X(t))t∈[0,T ] is a stochastic process in H with

X = Φ(W,A,B)

for fixed initial value X(0) = h ∈ H (and generator ∆).
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Computational problems

• Strong approximation: approximate the solution X .

• Weak approximation: approximate the distribution PX of X .

• Cubature: approximate integrals E(f(X)) =
∫

f dPX w.r.t. PX .

Analogously, for the solution X at a single time instance T .
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Computational problems

• Strong approximation: approximate the solution X .

• Weak approximation: approximate the distribution PX of X .

• Cubature: approximate integrals E(f(X)) =
∫

f dPX w.r.t. PX .

Analogously, for the solution X at a single time instance T .

Remark

• Reasonable, but not mandatory,

strong approximation weak approximation cubature.

• Key for proving lower bounds: every algorithm may only use partial

information about W , A, B, and f .
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III. Strong Approximation

1. Computational problem: approximate X .

2. Computational means: real number model and oracle for W , A, B.
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3. Quality criterion:

error(X̂) =
(
E(‖X − X̂‖2)

)1/2

for a norm ‖ · ‖ on X = C([0, 1], H), say, or

error(X̂) =
(
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H)
)1/2

6/3



III. Strong Approximation

1. Computational problem: approximate X .

2. Computational means: real number model and oracle for W , A, B.

3. Quality criterion:

error(X̂) =
(
E(‖X − X̂‖2)

)1/2

for a norm ‖ · ‖ on X = C([0, 1], H), say, or

error(X̂) =
(
E(‖X(T ) − X̂(T )‖2

H)
)1/2

and

cost(X̂) = E (#oracle calls + #arithmetical operations) .
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III. Strong Approximation

1. Computational problem: approximate X .

2. Computational means: real number model and oracle for W , A, B.

3. Quality criterion:

error(X̂) =
(
E(‖X − X̂‖2)

)1/2

for a norm ‖ · ‖ on X = C([0, 1], H), say, or

error(X̂) =
(
E(‖X(T ) − X̂(T )‖2

H)
)1/2

and

cost(X̂) = E (#oracle calls + #arithmetical operations) .

Sometimes cost(X̂) = E (#oracle calls).
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Strong approximation of SDEs

• upper bounds:
extensively studied

• lower bounds:
Clark, Cameron (1980), Cambanis, Hu (1996),

Hofmann, Müller-Gronbach, R (2000, . . . ),

Müller-Gronbach (2002, . . . ), Neuenkirch (2006,. . . ), . . .
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Strong approximation of SDEs

• upper bounds:
extensively studied

• lower bounds:
Clark, Cameron (1980), Cambanis, Hu (1996),

Hofmann, Müller-Gronbach, R (2000, . . . ),

Müller-Gronbach (2002, . . . ), Neuenkirch (2006,. . . ), . . .

Strong approximation of SPDEs

• upper bounds:
Grecksch, Kloeden (1996), Gyöngy, Nualart (1997), . . .

Jentzen, Kloeden (2010, . . . ), Jentzen, Röckner (2010), . . .

• lower bounds:
Davie, Gaines (2001), Müller-Gronbach, R (2007,. . . )
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Consider a scalar SDE. Assume that

(i) A and B satisfy standard smoothness assumptions,

(ii) the oracles for G = A and G = B provide G(t, h) or G(0,1)(t, h) for

any t ∈ [0, 1] and h ∈ R,

(iii) the oracle for W provides W (t, ω) for any t ∈ [0, 1].
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Theorem 1 Müller-Gronbach (2002, 2004)

For approximation at T

e(n) ≈ c1(A,B) · n−1.

For approximation in X = L∞([0, T ], R)

e(n) ≈ c2(A,B) · (n/ ln n)−1/2.
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Theorem 1 Müller-Gronbach (2002, 2004)

For approximation at T

e(n) ≈ c1(A,B) · n−1.

For approximation in X = L∞([0, T ], R)

e(n) ≈ c2(A,B) · (n/ ln n)−1/2.

Remarks

• Upper bounds via adaptive step-size control; uniform time

discretization is suboptimal.

• Results available for systems of SDEs and for Lp-norms.

• Partial results for more powerful oracles.
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Consider a stochastic heat equation

dX(t) = ∆X(t) dt + B(t,X(t)) dW (t).

Assume that

(i) ∆ is the Dirichlet Laplacian on D = [0, 1]d and H = L2(D),
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either γ = 0 and d = 1 or γ > d ∈ N.
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Consider a stochastic heat equation

dX(t) = ∆X(t) dt + B(t,X(t)) dW (t).

Assume that

(i) ∆ is the Dirichlet Laplacian on D = [0, 1]d and H = L2(D),

(ii) B(t, h)h̃ = G(t, h) · h̃ is a multiplication operator with

G : [0, T ] × H → H satisfying suitable smoothness conditions,

(iii)

W (t) =
∑

i∈Nd

|i|
−γ/2
2 · βi(t) · hi

with eigenfunctions hi of ∆, independent scalar Bms (βi)i∈Nd ,

either γ = 0 and d = 1 or γ > d ∈ N.

(iv) The oracle for W provides βi(t, ω) for any i ∈ N
d and t ∈ [0, T ].
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Theorem 2 Müller-Gronbach, R (2007)

For approximation in X = L2([0, T ], H)

e(n) � n−α,

where

α =
min(γ − d, d) + 2

2(d + 2)

if γ = 0 and d = 1 or γ ∈ ]d,∞[ \ {2d} and d ∈ N.
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Theorem 2 Müller-Gronbach, R (2007)

For approximation in X = L2([0, T ], H)

e(n) � n−α,

where

α =
min(γ − d, d) + 2

2(d + 2)

if γ = 0 and d = 1 or γ ∈ ]d,∞[ \ {2d} and d ∈ N.

Lower bounds are sharp, i.e., e(n) ≍ n−α, if

(i) G(t, h) = G(t) with G : [0, T ] → H , or

(ii) G(t, h) = g ◦ h with g : R → R and cost(X̂) = E(#oracle calls).

Unknown: Sharp bound in the case (ii) for

cost(X̂) = E (#oracle calls + #arith. op’s) .
11/1



Remarks

• Upper bounds via non-uniform time discretization of W and hyperbolic

cross approximation of X ; uniform time discretization is suboptimal.

• For approximation at T , see Müller-Gronbach, R, Wagner (2007),

Henkel (2010), Jentzen, Kloeden (2010, . . . ), Jentzen, Röckner (2010).

• More powerful oracle provides ξ(ω) for

ξ ∈ span{〈W (t), h〉 : t ∈ [0, T ], h ∈ H}.

See Davie, Gaines (2001) for a lower bound for a particular equation

with d = 1 and γ = 0.
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IV. Weak Approximation

1. Computational problem: approximate the distribution PX of X .

2. Computational means: real number model, oracle for A, B, and a

random number generator.
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1. Computational problem: approximate the distribution PX of X .

2. Computational means: real number model, oracle for A, B, and a

random number generator.

3. Quality criterion for a ‘random function generator’ X̂ :

error(X̂) = ρ(PX , PX̂) or error(X̂) = ρ(PX(T ), PX̂(T ))

for some metric ρ on the space of probability measures on

X = C([0, 1], H) or on H , resp., and

cost(X̂) = E (#oracle calls + #arithmetical operations

+#calls of random number generator) .
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Weak approximation of SDEs

• upper bounds:

extensively studied for PX(T )

• lower bounds:

Creutzig, Müller-Gronbach, R (2008), Slassi (2010).
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Weak approximation of SDEs

• upper bounds:

extensively studied for PX(T )

• lower bounds:

Creutzig, Müller-Gronbach, R (2008), Slassi (2010).

Weak approximation of SPDEs

• upper bounds:

Hausenblas (2003), Shardlow (2003),

Debussche, Printems (2009), Geissert, Kovácz, Larsson (2009),

Lindner (2010), . . .

• lower bounds:

—
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Remark: Consider the Wasserstein metric

ρ(µ, µ̂) = inf
ν

∫

X×X

‖x − y‖ dν(x, y)

with inf over all probability measures ν on X × X with marginals µ, µ̂.

By the Kantorovich-Rubinstein Theorem,

ρ(µ, µ̂) = sup
f∈Lip(1)

∣∣∣∣
∫

X

f dµ −

∫

X

f dµ̂

∣∣∣∣ .
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Consider a scalar SDE.

Goal: approximate PX by means of a ‘random function generator’ X̂ with

PX̂ supported on the space

{x ∈ L∞([0, 1]) : x piecewise linear}

of linear splines with free knots.
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Assume that
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Theorem 3 Creutzig, Müller-Gronbach, R (2007), Slassi (2010)

For X = L∞([0, 1], R) and the Wasserstein metric ρ

e(n) ≍ n−1/2.

For equations with additive noise

e(n) ≈ c(A,B) · n−1/2.
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Theorem 3 Creutzig, Müller-Gronbach, R (2007), Slassi (2010)

For X = L∞([0, 1], R) and the Wasserstein metric ρ

e(n) ≍ n−1/2.

For equations with additive noise

e(n) ≈ c(A,B) · n−1/2.

Remarks

• The same asymptotics holds P -a.s.

• For nonlinear approximation of stochastic processes, see also Cohen,

d’Ales (1997), Kon, Plaskota (2005), Dahlke et al. (2010).
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Theorem 3 Creutzig, Müller-Gronbach, R (2007), Slassi (2010)

For X = L∞([0, 1], R) and the Wasserstein metric ρ

e(n) ≍ n−1/2.

For equations with additive noise

e(n) ≈ c(A,B) · n−1/2.

Remarks

• For deterministic approximation of PX by discrete measures

(quantization), e(n) ≍ (ln n)−1/2, see Creutzig, Dereich,

Müller-Gronbach, R (2009), Müller-Gronbach, R (2010).

• For deterministic approximation of PX(T ) by discrete measures, see

Müller-Gronbach, R, Yaroslavtseva (2010).

17/1



V. Cubature

1. Computational problem: approximate E(f(X)) for f : X → R.

2. Computational means: real number model, oracle for A, B, and f , and

a random number generator.

Choose any scale of finite-dim. subspaces X1 ⊂ X2 ⊂ . . . ⊂ X. The

oracle for f returns f(x) for

x ∈

∞⋃

m=1

Xm.

The cost per call is inf{dim Xm : x ∈ Xm}.
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3. Quality criterion:

error(X̂) = sup
f∈F

(
E

∣∣E(f(X)) − X̂(f)
∣∣2

)1/2

.

and

cost(X̂) = sup
f∈F

E (cost for oracle calls + #arithmetical operations

+#calls of random number generator) .
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Consider an SDE, where X = C([0, 1], Rd), and F = Lip(1), i.e.,

|f(x) − f(y)| ≤ ‖x − y‖X, x, y ∈ X.

20/3



Consider an SDE, where X = C([0, 1], Rd), and F = Lip(1), i.e.,
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Theorem 4 Creutzig, Dereich, Müller-Gronbach, R (2009)
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Consider an SDE, where X = C([0, 1], Rd), and F = Lip(1), i.e.,

|f(x) − f(y)| ≤ ‖x − y‖X, x, y ∈ X.

Theorem 4 Creutzig, Dereich, Müller-Gronbach, R (2009)

n−1/2 � e(n) � n−1/2 · log n.

Remark

• Upper bound via multi-level algorithm.

See Heinrich (1998, . . . ), Giles (2008,. . . )

• Minimal errors of deterministic algorithms (log n)−1/2.

• Integration on the sequence space R
N, see

Hickernell, Wang (2002), Niu, Hickernell (2009), . . . ,

Plaskota, Wasilkowski (2010), . . .

20/1


	I. Complexity of Numerical Problems
	I. Complexity of Numerical Problems

	II. Computational Problems for S(P)DEs
	II. Computational Problems for S(P)DEs
	II. Computational Problems for S(P)DEs

	III. Strong Approximation
	III. Strong Approximation
	III. Strong Approximation
	III. Strong Approximation

	IV. Weak Approximation
	IV. Weak Approximation
	IV. Weak Approximation

	V. Cubature

