Complexity Results for S(P)DEs

Klaus Ritter Computational Stochastics TU Kaiserslautern

I. Complexity of Numerical Problems

- 1. Computational problem: approximation of SPDEs, SDEs, ...
- 2. Computational means: class \mathcal{A} of algorithms.
- 3. **Quality criterion**: error and cost of an algorithm.
- 4. Minimal error and complexity:

 $e(n) = \inf\{\operatorname{error}(A) : A \in \mathcal{A} \text{ such that } \operatorname{cost}(A) \leq n\},\$ $\operatorname{comp}(\varepsilon) = \inf\{\operatorname{cost}(A) : A \in \mathcal{A} \text{ such that } \operatorname{error}(A) \leq \varepsilon\}.$

I. Complexity of Numerical Problems

- 1. Computational problem: approximation of SPDEs, SDEs, ...
- 2. Computational means: class \mathcal{A} of algorithms.
- 3. **Quality criterion**: error and cost of an algorithm.
- 4. Minimal error and complexity:

$$e(n) = \inf\{\operatorname{error}(A) : A \in \mathcal{A} \text{ such that } \operatorname{cost}(A) \leq n\},\$$
$$\operatorname{comp}(\varepsilon) = \inf\{\operatorname{cost}(A) : A \in \mathcal{A} \text{ such that } \operatorname{error}(A) \leq \varepsilon\}.$$

Leads to

- benchmarks for existing algorithms,
- definition of optimal algorithms,
- construction of new algorithms (sometimes).

Typical result

$$e(n) \asymp n^{-\alpha},$$

consists of

• upper bound: construction of algorithms $A_n \in \mathcal{A}$ such that $\exists c > 0 \quad \forall n \in \mathbb{N}$:

$$\operatorname{cost}(A_n) \le n \quad \wedge \quad \operatorname{error}(A_n) \le c \cdot n^{-\alpha},$$

• lower bound: $\exists c > 0 \quad \forall \text{ algorithm } A \in \mathcal{A} \quad \forall n \in \mathbb{N} :$

$$cost(A) \le n \quad \Rightarrow \quad \operatorname{error}(A) \ge c \cdot n^{-\alpha}.$$

Typical result

$$e(n) \asymp n^{-\alpha},$$

consists of

• upper bound: construction of algorithms $A_n \in \mathcal{A}$ such that $\exists c > 0 \quad \forall n \in \mathbb{N}$:

$$cost(A_n) \le n \quad \land \quad \operatorname{error}(A_n) \le c \cdot n^{-\alpha},$$

• lower bound: $\exists c > 0 \quad \forall \text{ algorithm } A \in \mathcal{A} \quad \forall n \in \mathbb{N} :$

$$cost(A) \le n \quad \Rightarrow \quad \operatorname{error}(A) \ge c \cdot n^{-\alpha}.$$

Monographs

Traub, Wasilkowski, Woźniakowski (1988), Novak (1988), ..., Plaskota (1996), ..., Ritter (2000) ...

II. Computational Problems for S(P)DEs

SDE

$$dX(t) = A(t, X(t)) dt + B(t, X(t)) dW(t)$$

with state space $H = \mathbb{R}^d$ and *m*-dimensional Brownian motion *W*.

II. Computational Problems for S(P)DEs

SDE

$$dX(t) = A(t, X(t)) dt + B(t, X(t)) dW(t)$$

with state space $H = \mathbb{R}^d$ and *m*-dimensional Brownian motion *W*.

SPDE

$$dX(t) = \left(\Delta X(t) + A(t, X(t))\right) dt + B(t, X(t)) dW(t)$$

with infinite-dim. state space H and infinite-dim. Brownian motion W.

II. Computational Problems for S(P)DEs

SDE

$$dX(t) = A(t, X(t)) dt + B(t, X(t)) dW(t)$$

with state space $H = \mathbb{R}^d$ and m-dimensional Brownian motion W.

SPDE

$$dX(t) = \left(\Delta X(t) + A(t, X(t))\right) dt + B(t, X(t)) dW(t)$$

with infinite-dim. state space H and infinite-dim. Brownian motion W.

Solution $X = (X(t))_{t \in [0,T]}$ is a stochastic process in H with

$$X = \Phi(W, A, B)$$

for fixed initial value $X(0) = h \in H$ (and generator Δ).

Computational problems

- Strong approximation: approximate the solution X.
- Weak approximation: approximate the distribution P_X of X.
- Cubature: approximate integrals $E(f(X)) = \int f \, dP_X$ w.r.t. P_X .

Analogously, for the solution X at a single time instance T.

Computational problems

- Strong approximation: approximate the solution X.
- Weak approximation: approximate the distribution P_X of X.
- Cubature: approximate integrals $E(f(X)) = \int f \, dP_X$ w.r.t. P_X .

Analogously, for the solution X at a single time instance T.

Remark

• Reasonable, but not mandatory,

strong approximation \rightsquigarrow weak approximation \rightsquigarrow cubature.

• Key for proving lower bounds: every algorithm may only use partial information about W, A, B, and f.

- 1. Computational problem: approximate X.
- 2. Computational means: real number model and oracle for W, A, B.

- 1. Computational problem: approximate X.
- 2. Computational means: real number model and oracle for W, A, B.
- 3. Quality criterion:

$$\operatorname{error}(\hat{X}) = \left(E(\|X - \hat{X}\|^2)\right)^{1/2}$$

for a norm $\|\cdot\|$ on $\mathfrak{X}=C([0,1],H)$, say, or

$$\operatorname{error}(\hat{X}) = \left(E(\|X(T) - \hat{X}(T)\|_{H}^{2}) \right)^{1/2}$$

- 1. Computational problem: approximate X.
- 2. Computational means: real number model and oracle for W, A, B.
- 3. Quality criterion:

$$\operatorname{error}(\hat{X}) = \left(E(\|X - \hat{X}\|^2)\right)^{1/2}$$

for a norm $\|\cdot\|$ on $\mathfrak{X}=C([0,1],H),$ say, or

$$\operatorname{error}(\hat{X}) = \left(E(\|X(T) - \hat{X}(T)\|_{H}^{2}) \right)^{1/2}$$

and

 $\cot(\hat{X}) = E(\# \text{oracle calls} + \# \text{arithmetical operations}).$

- 1. Computational problem: approximate X.
- 2. Computational means: real number model and oracle for W, A, B.
- 3. Quality criterion:

$$\operatorname{error}(\hat{X}) = \left(E(\|X - \hat{X}\|^2)\right)^{1/2}$$

for a norm $\|\cdot\|$ on $\mathfrak{X}=C([0,1],H),$ say, or

$$\operatorname{error}(\hat{X}) = \left(E(\|X(T) - \hat{X}(T)\|_{H}^{2}) \right)^{1/2}$$

and

 $\cot(\hat{X}) = E(\# \text{oracle calls} + \# \text{arithmetical operations}).$

Sometimes $\operatorname{cost}(\hat{X}) = E(\# \text{oracle calls}).$

Strong approximation of SDEs

• upper bounds:

extensively studied

• lower bounds:

Clark, Cameron (1980), Cambanis, Hu (1996), Hofmann, Müller-Gronbach, R (2000, . . .), Müller-Gronbach (2002, . . .), Neuenkirch (2006,. . .), . . .

Strong approximation of SDEs

• upper bounds:

extensively studied

• lower bounds:

Clark, Cameron (1980), Cambanis, Hu (1996), Hofmann, Müller-Gronbach, R (2000, ...), Müller-Gronbach (2002, ...), Neuenkirch (2006,...), ...

Strong approximation of SPDEs

• upper bounds:

Grecksch, Kloeden (1996), Gyöngy, Nualart (1997), ... Jentzen, Kloeden (2010, ...), Jentzen, Röckner (2010), ...

Iower bounds:

Davie, Gaines (2001), Müller-Gronbach, R (2007,...)

Consider a scalar SDE. Assume that

- (i) A and B satisfy standard smoothness assumptions,
- (ii) the oracles for G = A and G = B provide G(t, h) or $G^{(0,1)}(t, h)$ for any $t \in [0, 1]$ and $h \in \mathbb{R}$,
- (iii) the oracle for W provides $W(t, \omega)$ for any $t \in [0, 1]$.

Theorem 1 *Müller-Gronbach (2002, 2004)* For approximation at T

$$e(n) \approx c_1(A, B) \cdot n^{-1}.$$

For approximation in $\mathfrak{X} = L_{\infty}([0,T],\mathbb{R})$

$$e(n) \approx c_2(A, B) \cdot (n/\ln n)^{-1/2}.$$

Theorem 1 *Müller-Gronbach (2002, 2004)* For approximation at T

$$e(n) \approx c_1(A, B) \cdot n^{-1}.$$

For approximation in $\mathfrak{X} = L_{\infty}([0,T],\mathbb{R})$

$$e(n) \approx c_2(A, B) \cdot (n/\ln n)^{-1/2}.$$

Remarks

- Upper bounds via adaptive step-size control; uniform time discretization is suboptimal.
- Results available for systems of SDEs and for L_p -norms.
- Partial results for more powerful oracles.

$$dX(t) = \Delta X(t) dt + B(t, X(t)) dW(t).$$

Assume that

(i) Δ is the Dirichlet Laplacian on $D = [0, 1]^d$ and $H = L_2(D)$,

$$dX(t) = \Delta X(t) dt + B(t, X(t)) dW(t).$$

Assume that

- (i) Δ is the Dirichlet Laplacian on $D = [0, 1]^d$ and $H = L_2(D)$,
- (ii) $B(t,h)\tilde{h} = G(t,h) \cdot \tilde{h}$ is a multiplication operator with $G: [0,T] \times H \to H$ satisfying suitable smoothness conditions,

$$dX(t) = \Delta X(t) dt + B(t, X(t)) dW(t).$$

Assume that

- (i) Δ is the Dirichlet Laplacian on $D=[0,1]^d$ and $H=L_2(D),$
- (ii) $B(t,h)\tilde{h} = G(t,h) \cdot \tilde{h}$ is a multiplication operator with $G: [0,T] \times H \to H$ satisfying suitable smoothness conditions, (iii)

$$W(t) = \sum_{\mathbf{i} \in \mathbb{N}^d} |\mathbf{i}|_2^{-\gamma/2} \cdot \beta_{\mathbf{i}}(t) \cdot h_{\mathbf{i}}$$

with eigenfunctions h_i of Δ , independent scalar Bms $(\beta_i)_{i \in \mathbb{N}^d}$, either $\gamma = 0$ and d = 1 or $\gamma > d \in \mathbb{N}$.

$$dX(t) = \Delta X(t) dt + B(t, X(t)) dW(t).$$

Assume that

- (i) Δ is the Dirichlet Laplacian on $D=[0,1]^d$ and $H=L_2(D)$,
- (ii) $B(t,h)\tilde{h} = G(t,h) \cdot \tilde{h}$ is a multiplication operator with $G: [0,T] \times H \to H$ satisfying suitable smoothness conditions, (iii)

$$W(t) = \sum_{\mathbf{i} \in \mathbb{N}^d} |\mathbf{i}|_2^{-\gamma/2} \cdot \beta_{\mathbf{i}}(t) \cdot h_{\mathbf{i}}$$

with eigenfunctions h_i of Δ , independent scalar Bms $(\beta_i)_{i \in \mathbb{N}^d}$, either $\gamma = 0$ and d = 1 or $\gamma > d \in \mathbb{N}$.

(iv) The oracle for W provides $\beta_i(t, \omega)$ for any $i \in \mathbb{N}^d$ and $t \in [0, T]$.

$$e(n) \succeq n^{-\alpha},$$

where

$$\alpha = \frac{\min(\gamma - d, d) + 2}{2(d+2)}$$

$$\text{if}\qquad \gamma=0 \text{ and } d=1 \qquad \text{or}\qquad \gamma\in \left]d,\infty\right[\setminus \left\{2d\right\} \text{ and } d\in\mathbb{N}.$$

$$e(n) \succeq n^{-\alpha},$$

where

$$\alpha = \frac{\min(\gamma - d, d) + 2}{2(d+2)}$$

 $\text{if} \qquad \gamma=0 \text{ and } d=1 \qquad \text{or} \qquad \gamma\in \left]d,\infty\right[\setminus \left\{2d\right\} \text{ and } d\in\mathbb{N}.$

Lower bounds are sharp, i.e., $e(n) \asymp n^{-\alpha}$, if

(i) G(t,h)=G(t) with $G:[0,T] \rightarrow H$,

$$e(n) \succeq n^{-\alpha},$$

where

$$\alpha = \frac{\min(\gamma - d, d) + 2}{2(d+2)}$$

 $\text{if} \qquad \gamma = 0 \text{ and } d = 1 \qquad \text{or} \qquad \gamma \in \left] d, \infty \right[\setminus \left\{ 2d \right\} \text{ and } d \in \mathbb{N}.$

Lower bounds are sharp, i.e., $e(n) \asymp n^{-\alpha},$ if

(i)
$$G(t,h) = G(t)$$
 with $G: [0,T] \rightarrow H$, or

(ii) $G(t,h) = g \circ h$ with $g : \mathbb{R} \to \mathbb{R}$ and $cost(\hat{X}) = E(\#oracle calls)$.

$$e(n) \succeq n^{-\alpha},$$

where

$$\alpha = \frac{\min(\gamma - d, d) + 2}{2(d+2)}$$

 $\text{if} \qquad \gamma = 0 \text{ and } d = 1 \qquad \text{or} \qquad \gamma \in \left] d, \infty \right[\setminus \left\{ 2d \right\} \text{ and } d \in \mathbb{N}.$

Lower bounds are sharp, i.e., $e(n) \asymp n^{-\alpha},$ if

(i)
$$G(t,h) = G(t)$$
 with $G: [0,T] \rightarrow H$, or

(ii) $G(t,h) = g \circ h$ with $g : \mathbb{R} \to \mathbb{R}$ and $cost(\hat{X}) = E(\#oracle calls)$.

Unknown: Sharp bound in the case (ii) for

$$\operatorname{cost}(\hat{X}) = E\left(\#$$
oracle calls $+$ $\#$ arith. op's $ight)$.

Remarks

- Upper bounds via non-uniform time discretization of W and hyperbolic cross approximation of X; uniform time discretization is suboptimal.
- For approximation at *T*, see *Müller-Gronbach, R, Wagner (2007)*, Henkel (2010), Jentzen, Kloeden (2010, ...), Jentzen, Röckner (2010).
- More powerful oracle provides $\xi(\omega)$ for

$$\xi \in \overline{\operatorname{span}}\{\langle W(t), h \rangle : t \in [0, T], h \in H\}.$$

See Davie, Gaines (2001) for a lower bound for a particular equation with d=1 and $\gamma=0$.

IV. Weak Approximation

- 1. Computational problem: approximate the distribution P_X of X.
- 2. Computational means: real number model, oracle for A, B, and a random number generator.

IV. Weak Approximation

- 1. Computational problem: approximate the distribution P_X of X.
- 2. Computational means: real number model, oracle for A, B, and a random number generator.
- 3. Quality criterion for a 'random function generator' \hat{X} :

$$\operatorname{error}(\hat{X}) = \rho(P_X, P_{\hat{X}})$$
 or $\operatorname{error}(\hat{X}) = \rho(P_{X(T)}, P_{\hat{X}(T)})$

for some metric ρ on the space of probability measures on $\mathfrak{X}=C([0,1],H) \text{ or on } H\text{, resp.,}$

IV. Weak Approximation

- 1. Computational problem: approximate the distribution P_X of X.
- 2. Computational means: real number model, oracle for A, B, and a random number generator.
- 3. Quality criterion for a 'random function generator' \hat{X} :

$$\operatorname{error}(\hat{X}) = \rho(P_X, P_{\hat{X}})$$
 or $\operatorname{error}(\hat{X}) = \rho(P_{X(T)}, P_{\hat{X}(T)})$

for some metric ρ on the space of probability measures on $\mathfrak{X}=C([0,1],H) \text{ or on } H\text{, resp., and}$

$$\label{eq:cost} \begin{split} \cos t(\hat{X}) &= \mathbb{E} \left(\# \text{oracle calls} + \# \text{arithmetical operations} \right. \\ &+ \# \text{calls of random number generator} \right). \end{split}$$

Weak approximation of SDEs

• upper bounds:

extensively studied for $P_{X(T)}$

• lower bounds:

Creutzig, Müller-Gronbach, R (2008), Slassi (2010).

Weak approximation of SDEs

• upper bounds:

extensively studied for $P_{X(T)}$

• lower bounds:

Creutzig, Müller-Gronbach, R (2008), Slassi (2010).

Weak approximation of SPDEs

• upper bounds:

Hausenblas (2003), Shardlow (2003), Debussche, Printems (2009), Geissert, Kovácz, Larsson (2009), Lindner (2010), . . .

• lower bounds:

Remark: Consider the Wasserstein metric

$$\rho(\mu,\widehat{\mu}) = \inf_{\nu} \int_{\mathfrak{X}\times\mathfrak{X}} \|x-y\| \, d\nu(x,y)$$

with \inf over all probability measures ν on $\mathfrak{X} \times \mathfrak{X}$ with marginals $\mu, \hat{\mu}$. By the Kantorovich-Rubinstein Theorem,

$$\rho(\mu,\widehat{\mu}) = \sup_{f \in \operatorname{Lip}(1)} \left| \int_{\mathfrak{X}} f \, d\mu - \int_{\mathfrak{X}} f \, d\widehat{\mu} \right|.$$

Consider a scalar SDE.

Goal: approximate P_X by means of a 'random function generator' \hat{X} with $P_{\hat{X}}$ supported on the space

 $\{x \in L_{\infty}([0,1]) : x \text{ piecewise linear}\}\$

of linear splines with free knots.

Consider a scalar SDE.

Goal: approximate P_X by means of a 'random function generator' \hat{X} with $P_{\hat{X}}$ supported on the space

 $\{x \in L_{\infty}([0,1]) : x \text{ piecewise linear}\}\$

of linear splines with free knots.

Assume that

(i) A and B satisfy standard smoothness assumptions,

(ii) the oracles for G = A and G = B provide G(t, h) or $G^{(0,1)}(t, h)$ for any $t \in [0, 1]$ and $h \in \mathbb{R}$,

Theorem 3 Creutzig, Müller-Gronbach, R (2007), Slassi (2010) For $\mathfrak{X} = L_{\infty}([0, 1], \mathbb{R})$ and the Wasserstein metric ρ

$$e(n) \asymp n^{-1/2}.$$

For equations with additive noise

$$e(n) \approx c(A, B) \cdot n^{-1/2}$$

Theorem 3 Creutzig, Müller-Gronbach, R (2007), Slassi (2010) For $\mathfrak{X} = L_{\infty}([0, 1], \mathbb{R})$ and the Wasserstein metric ρ

$$e(n) \asymp n^{-1/2}.$$

For equations with additive noise

$$e(n) \approx c(A, B) \cdot n^{-1/2}$$

Remarks

- The same asymptotics holds *P*-a.s.
- For nonlinear approximation of stochastic processes, see also Cohen, d'Ales (1997), Kon, Plaskota (2005), Dahlke et al. (2010).

Theorem 3 Creutzig, Müller-Gronbach, R (2007), Slassi (2010) For $\mathfrak{X} = L_{\infty}([0, 1], \mathbb{R})$ and the Wasserstein metric ρ

$$e(n) \asymp n^{-1/2}.$$

For equations with additive noise

$$e(n) \approx c(A, B) \cdot n^{-1/2}$$

Remarks

- For deterministic approximation of P_X by discrete measures (quantization), $e(n) \asymp (\ln n)^{-1/2}$, see *Creutzig, Dereich, Müller-Gronbach, R (2009), Müller-Gronbach, R (2010)*.
- For deterministic approximation of $P_{X(T)}$ by discrete measures, see *Müller-Gronbach, R, Yaroslavtseva (2010)*.

V. Cubature

- 1. Computational problem: approximate E(f(X)) for $f : \mathfrak{X} \to \mathbb{R}$.
- 2. Computational means: real number model, oracle for A, B, and f, and a random number generator.

Choose any scale of finite-dim. subspaces $\mathfrak{X}_1 \subset \mathfrak{X}_2 \subset \ldots \subset \mathfrak{X}$. The oracle for f returns f(x) for

$$x \in \bigcup_{m=1}^{\infty} \mathfrak{X}_m.$$

The cost per call is $\inf \{\dim \mathfrak{X}_m : x \in \mathfrak{X}_m \}.$

3. Quality criterion:

$$\operatorname{error}(\hat{X}) = \sup_{f \in F} \left(\mathbb{E} \left| E(f(X)) - \hat{X}(f) \right|^2 \right)^{1/2}$$

and

 $\begin{aligned} \cosh(\hat{X}) &= \sup_{f \in F} \mathbb{E} \left(\text{cost for oracle calls} + \# \text{arithmetical operations} \right. \\ &+ \# \text{calls of random number generator} \right). \end{aligned}$

Consider an SDE, where $\mathfrak{X} = C([0, 1], \mathbb{R}^d)$, and $F = \operatorname{Lip}(1)$, i.e., $|f(x) - f(y)| \le ||x - y||_{\mathfrak{X}}, \qquad x, y \in \mathfrak{X}.$ Consider an SDE, where $\mathfrak{X} = C([0, 1], \mathbb{R}^d)$, and $F = \operatorname{Lip}(1)$, i.e., $|f(x) - f(y)| \le ||x - y||_{\mathfrak{X}}, \qquad x, y \in \mathfrak{X}.$

Theorem 4 Creutzig, Dereich, Müller-Gronbach, R (2009)

$$n^{-1/2} \preceq e(n) \preceq n^{-1/2} \cdot \log n.$$

Consider an SDE, where $\mathfrak{X} = C([0, 1], \mathbb{R}^d)$, and $F = \operatorname{Lip}(1)$, i.e., $|f(x) - f(y)| \le ||x - y||_{\mathfrak{X}}, \qquad x, y \in \mathfrak{X}.$

Theorem 4 Creutzig, Dereich, Müller-Gronbach, R (2009)

$$n^{-1/2} \preceq e(n) \preceq n^{-1/2} \cdot \log n.$$

Remark

- Upper bound via multi-level algorithm. See *Heinrich (1998, ...), Giles (2008,...)*
- Minimal errors of deterministic algorithms $(\log n)^{-1/2}$.
- Integration on the sequence space ℝ^N, see
 Hickernell, Wang (2002), Niu, Hickernell (2009), ..., Plaskota, Wasilkowski (2010), ...