
Taylor expansions for SODEs
Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Taylor Expansions and Numerical Approximations for

Stochastic Partial Differential Equations

A. Jentzen

Joint works with P. E. Kloeden and M. Röckner

Faculty of Mathematics

Bielefeld University

12th August 2010

A. Jentzen Taylor Expansions for SPDEs



Taylor expansions for SODEs
Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Content

1 Taylor expansions for SODEs

2 Taylor expansions for SPDEs

3 A new numerical method for SPDEs with non-additive noise

4 A new numerical method for SPDEs with additive noise

A. Jentzen Taylor Expansions for SPDEs



Taylor expansions for SODEs
Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Content

1 Taylor expansions for SODEs

2 Taylor expansions for SPDEs

3 A new numerical method for SPDEs with non-additive noise

4 A new numerical method for SPDEs with additive noise

A. Jentzen Taylor Expansions for SPDEs



Taylor expansions for SODEs
Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Let T > 0 and let (Ω,F , P) be a probability space. Let f , g : R → R be

smooth functions and let (Wt)t∈[0,T ] be a scalar Brownian motion.

Consider the SODE:

dXt = f(Xt) dt + g(Xt) dWt ,

which is understood as

Xt = X0 +

∫ t

0

f(Xs) ds +

∫ t

0

g(Xs) dWs

P-a.s. for all t ∈ [0, T ]. Applying Itô’s formula to the integrands above yields

Xt ≈ X0 + f(X0) · t + g(X0) ·

∫ t

0

dWs + g′(X0) g(X0) ·

∫ t

0

∫ s

0

dWu dWs

= X0 + f(X0) · t + g(X0) · Wt +
1

2
· g′(X0) g(X0) ·

(
(Wt)

2 − t
)

P-a.s.

Milstein’s approximation (1974).
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P-a.s. for all t ∈ [0, T ]. Applying Itô’s formula to the integrands above yields

Xt ≈ X0 + f(X0) · t + g(X0) ·

∫ t

0

dWs + g′(X0) g(X0) ·

∫ t

0

∫ s

0

dWu dWs

= X0 + f(X0) · t + g(X0) · Wt +
1

2
· g′(X0) g(X0) ·

(
(Wt)

2 − t
)

P-a.s.

Milstein’s approximation (1974).

A. Jentzen Taylor Expansions for SPDEs



Taylor expansions for SODEs
Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Let T > 0 and let (Ω,F , P) be a probability space. Let f , g : R → R be

smooth functions and let (Wt)t∈[0,T ] be a scalar Brownian motion.

Consider the SODE:

dXt = f(Xt) dt + g(Xt) dWt ,

which is understood as

Xt = X0 +

∫ t

0

f(Xs) ds +

∫ t

0

g(Xs) dWs
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Reconsider Milstein’s approximation:

Xt ≈ X0 + f(X0) · t + g(X0) · Wt +
1

2
· g′(X0) g(X0) ·

(
(Wt)

2 − t
)

The corresponding numerical scheme, the so-called Milstein scheme (or

also Taylor scheme of (strong) order 1.0), is then given by Y N
0 = X0 and

Y N
n+1 = Y N

n + f(Y N
n ) ·

T

N
+ g(Y N

n ) ·
(

W (n+1)T
N

− W nT
N

)

+
1

2
· g′(Y N

n ) g(Y N
n ) ·

((

W (n+1)T

N

− W nT
N

)2
−

T

N

)

for every n ∈ {0, 1, . . . , N − 1}, N ∈ N and is of (strong) order 1.

It is very easy to simulate and impressively efficient for one-dimensional

SODEs in comparison to e.g. Euler’s method which is of (strong) order 1
2 .
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The general theory of Taylor expansions for SODEs and the numerical

schemes based on them can be found in the monographs

Kloeden & Platen (1992)

Milstein (1995)

(Stochastic Taylor expansions).

Essential constituents:

Xt ≈ X0 + f(X0) ·

∫ t

0

ds + g(X0) ·

∫ t

0

dWs + g′(X0) g(X0) ·

∫ t

0

∫ s

0

dWu dWs

Method for deriving Taylor expansions:

Iterated application of the stochastic fundamental theorem of calculus,

i.e. Itô’s formula.
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Itô’s formula for SPDEs? In general not a semi-martingale

Let (H, ‖·‖) be a reasonable state space of a SPDE.

Krylov & Rozovskii (1979): Itô formula for F : H → R, F(v) = ‖v‖2,

v ∈ H, with powerful consequences to the variational approach, see

also Gyöngy & Krylov (1981) and Prévot & Röckner (2007)

Gradinaru, Nourdin & Tindel (2005): Itô formula for F : H → R smooth

Zambotti (2006): Itô formula for F : H → R smooth

For the Taylor expansion approach for SODEs, one would need an Itô formula

for F : H → H smooth.

If the solution of the SPDE is spatially smooth and the solution is a

semi-martingale, then Taylor expansions & Taylor schemes for SPDEs in

Grecksch & Kloeden (1996), see also Kloeden & Shott (2001)

Buckdahn & Ma (2002)

Lord & Rougemont (2004)
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SPDE Setting

Fix T > 0, a probability space (Ω,F , P) with normal filtration (Ft)t∈[0,T ]

and two R-Hilbert spaces H and U.

(A1) Let A : D(A) ⊂ H → H be a bijective linear operator with negative

compact inverse.

(A2) Let W : [0, T ] × Ω → U be a standard Q-Wiener process with

covariance operator Q : U → U. Let U0 := Q
1
2 (U).

(A3) Let F : D((−A)β) → H and B : D((−A)β) → HS(U0, H) with

β ∈ [0, 1) be twice continuously Fréchet differentiable with appropriate

globally bounded derivatives.

(A4) Let ξ : Ω → D(A) be F0/B(D(A))-measurable with E ‖ξ‖4
D(A) < ∞.
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Consider the SPDE

dXt =
[

AXt + F(Xt)
]

dt + B(Xt) dWt , X0 = ξ

for t ∈ [0, T ].

SPDE in the mild form

Xt = eAtξ +

∫ t

0

eA(t−s)F(Xs) ds +

∫ t

0

eA(t−s)B(Xs) dWs

P-a.s. for all t ∈ [0, T ].
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Example

Let d ∈ N and consider the SPDE

dXt(x) =
[

κ∆Xt(x) + f(x, Xt(x))
]

dt + b(x, Xt(x)) dWt (x)

with Xt |∂(0,1)d ≡ 0 and X0(x) = ξ(x) for x ∈ (0, 1)d and t ∈ [0, T ]. Here

U = H = L2((0, 1)d , R),

A : D(A) ⊂ H → H Laplacian with D.b.c. times κ > 0 and

F : D((−A)β) → H and B : D((−A)β) → HS(U0, H) given by

(F(v))(x) = f(x, v(x)) and (B(v))(x) = b(x, v(x)) · u(x) for all

x ∈ (0, 1)d , v ∈ D((−A)β), u ∈ U0.
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SPDE in mild form

Xt = eAtξ +

∫ t

0

eA(t−s)F(Xs) ds +

∫ t

0

eA(t−s)B(Xs) dWs

P-a.s. for all t ∈ [0, T ]. Subtracting X0 gives

Xt − X0 =
(
eAt − I

)
X0 +

∫ t

0

eA(t−s)F(Xs) ds +

∫ t

0

eA(t−s)B(Xs) dWs

P-a.s. for all t ∈ [0, T ].
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P-a.s. for all t ∈ [0, T ]. Classical Taylor approximations:

F(Xs) ≈ F(X0) + F ′(X0)∆Xs +
1

2
F ′′(X0)(∆Xs,∆Xs) + . . .

B(Xs) ≈ B(X0) + B′(X0)∆Xs +
1

2
B′′(X0)(∆Xs,∆Xs) + . . .
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(

eAt − I
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∫ t
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1

2
F ′′(X0)(∆Xs,∆Xs) + . . .

B(Xs) ≈ B(X0) + B′(X0)∆Xs +
1

2
B′′(X0)(∆Xs,∆Xs) + . . .
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=(
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0
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∫ t
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eA(t−s)B(X0) dWs
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=(
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eAt − I
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∫ t

0

eA(t−s)B(X0) dWs

Exponential Euler approximation (see the final section for more details).
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Using ∆Xs ≈
∫ s

0
eA(s−u)B(X0) dWu (first simple Taylor approximation)

recursively yields
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(
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)
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)

dWs

Infinite dimensional analog of Milstein’s approximation (see the next section

of this talk)

A. Jentzen Taylor Expansions for SPDEs



Taylor expansions for SODEs
Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Using ∆Xs ≈
∫ s

0
eA(s−u)B(X0) dWu (first simple Taylor approximation)

recursively yields

∆Xt ≈
(

eAt − I
)

X0 +

∫ t

0

eA(t−s)F(X0) ds +

∫ t

0

eA(t−s)B(X0) dWs

+

∫ t

0

eA(t−s)B′(X0)

(∫ s

0

eA(s−u)B(X0) dWu

)

dWs, i.e.

Xt ≈ eAt X0 +

∫ t

0

eA(t−s)F(X0) ds +

∫ t

0

eA(t−s)B(X0) dWs

+

∫ t

0

eA(t−s)B′(X0)

(∫ s

0

eA(s−u)B(X0) dWu

)

dWs

Infinite dimensional analog of Milstein’s approximation (see the next section

of this talk)

A. Jentzen Taylor Expansions for SPDEs



Taylor expansions for SODEs
Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Using ∆Xs ≈
∫ s

0
eA(s−u)B(X0) dWu (first simple Taylor approximation)

recursively yields

∆Xt ≈
(

eAt − I
)

X0 +

∫ t

0

eA(t−s)F(X0) ds +

∫ t

0

eA(t−s)B(X0) dWs

+

∫ t

0

eA(t−s)B′(X0)

(∫ s

0

eA(s−u)B(X0) dWu

)

dWs, i.e.

Xt ≈ eAt X0 +

∫ t

0

eA(t−s)F(X0) ds +

∫ t

0

eA(t−s)B(X0) dWs

+

∫ t

0

eA(t−s)B′(X0)

(∫ s

0

eA(s−u)B(X0) dWu

)

dWs

Infinite dimensional analog of Milstein’s approximation (see the next section

of this talk)

A. Jentzen Taylor Expansions for SPDEs



Taylor expansions for SODEs
Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Using ∆Xs ≈
∫ s

0
eA(s−u)B(X0) dWu (first simple Taylor approximation)

recursively yields

∆Xt ≈
(

eAt − I
)

X0 +

∫ t

0

eA(t−s)F(X0) ds +

∫ t

0

eA(t−s)B(X0) dWs

+

∫ t

0

eA(t−s)B′(X0)

(∫ s

0

eA(s−u)B(X0) dWu

)

dWs, i.e.

Xt ≈ eAt X0 +

∫ t

0

eA(t−s)F(X0) ds +

∫ t

0

eA(t−s)B(X0) dWs

+

∫ t

0

eA(t−s)B′(X0)

(∫ s

0

eA(s−u)B(X0) dWu

)

dWs

Infinite dimensional analog of Milstein’s approximation (see the next section

of this talk)

A. Jentzen Taylor Expansions for SPDEs



Taylor expansions for SODEs
Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Iterating this idea yields more Taylor approximations such as

Xt ≈ eAt X0 +

∫ t

0

eA(t−s)F(X0) ds +

∫ t

0

eA(t−s)B(X0) dWs

+

∫ t

0

eA(t−s)B′(X0)
(

eAs − I
)

X0 dWs

+

∫ t

0

eA(t−s)B′(X0)

(∫ s

0

eA(s−u)B(X0) dWu

)

dWs

+
1

2

∫ t

0

eA(t−s)B′′(X0)

(∫ s

0

eA(s−u)B(X0) dWu ,

∫ s

0

eA(s−u)B(X0) dWu

)

dWs

A. Jentzen Taylor Expansions for SPDEs



Taylor expansions for SODEs
Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Some remarks:

References:

“Taylor expansions of solutions of stochastic partial differential equations

with additive noise” (J & Kloeden; Ann. Probab. 2010)

“Taylor expansions of solutions of stochastic partial differential

equations” (J; DCDS B 2010)

Systematic theory with appropriate integral operators

Precisely description of the remainder terms & arbitrarily high orders

Essential constituents:
∫ t

0
eA(t−s)B′(X0)

(∫ s

0
eA(s−u)B(X0) dWu

)
dWs

Method: classical Taylor expansions in Banach spaces & recursion

technique

These Taylor Expansions for SPDEs generalize the Taylor Expansions

for ODEs and SODEs.
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Reconsider the SPDE and the infinite dimensional analog of

Milstein’s approximation

Reconsider the SPDE

dXt =
[

AXt + F(Xt)
]

dt + B(Xt) dWt , X0 = ξ

for t ∈ [0, T ]. SPDE in the mild form

Xt = eAtX0 +

∫ t

0

eA(t−s)F(Xs) ds +

∫ t

0

eA(t−s)B(Xs) dWs

P-a.s. for all t ∈ [0, T ]. Infinite dimensional analog of Milstein’s

approximation:

Xt ≈ eAt X0 +

∫ t

0

eA(t−s)F(X0) ds +

∫ t

0

eA(t−s)B(X0) dWs

+

∫ t

0
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(∫ s
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A one-dimensional example SPDE

Let d = 1 and consider the SPDE

dXt(x) =
[

κ
∂2

∂x2
Xt(x) + f(x, Xt(x))

]

dt + b(x, Xt (x)) dWt (x)

with Xt(0) = Xt(1) = 0 and X0(x) = ξ(x) for x ∈ (0, 1) and t ∈ [0, T ]
with the covariance operator Q : H → H given by

(Qv)(x) =
∞∑

j=1

2

j3
cos(jπx)

∫ 1

0

cos(jπy) v(y) dy

for all x ∈ (0, 1) and all v ∈ H.
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Goal: Solve the strong approximation problem, i.e. compute Y : Ω → H

such that
(

E

[∫ 1

0

|XT (x) − Y(x)|2 dx

]) 1
2

< ε

holds for a given precision ε > 0 with the least possible computational effort.

Spectral Galerkin approximations: PN : H → H, N ∈ N, given by

(PN(v))(x) =
N∑

n=1

2 sin(nπx)

∫ 1

0

sin(nπy) v(y) dy

for all x ∈ (0, 1), v ∈ H and all N ∈ N.
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Linear implicit Euler scheme and spectral Galerkin approximations

Z N
n : Ω → PN(H), n ∈ {0, 1, . . . , N4}, N ∈ N, given by Z N

0 = PN(ξ) and

Z N
n+1 =

PN

(

I −
T

N4
A

)−1(

Z N
n +

T

N4
· f(·, Z N

n ) + b(·, Z N
n ) ·

(

W N
(n+1)T

N4

− W N
nT
N4

))

for all n ∈ {0, 1, . . . , N4 − 1}, N ∈ N.

N4 time steps are used in (Z N
n )n∈{0,1,...,N4}

Z N
n ∈ PN(H) for all n ∈ {0, 1, . . . , N4} and PN(H) is N-dimensional

N4
︸︷︷︸

time steps

· N
︸︷︷︸

dim(PN(H))

= N5 independent standard normal random

variables needed to simulate Z N
N4 ≈ XT
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Theorem (e.g. Hausenblas, 2003)

There exist Cr > 0, r ∈ (0, 2), such that

(

E

[∫ 1

0

∣
∣XT (x) − Z N

N4(x)
∣
∣2 dx

]) 1
2

≤ Cr · N(r−2)

holds for all N ∈ N and all arbitrarily small r ∈ (0, 2).

Z N
N4 converges to XT with order 2−

N5 random variables are needed to simulate Z N
N4

Conclusion: about O(ε−
5
2 ) random variables are needed to achieve the

desired precision ε > 0
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A new algorithm for SPDEs with non-additive noise

Reconsider the infinite dimensional analog of Milstein’s approximation

Xt ≈ eAt X0 +

∫ t

0

eA(t−s)F(X0) ds +

∫ t

0

eA(t−s)B(X0) dWs

+

∫ t

0

eA(t−s)B′(X0)

(∫ s

0

eA(s−u)B(X0)dWu

)

dWs

Approximating the semigroup yields

Xt ≈

eAt
(

X0+t ·F(X0)+

∫ t

0

B(X0) dWs+

∫ t

0

B′(X0)

(∫ s

0

B(X0)dWu

)

dWs

)
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∫ t
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This indicates the numerical method Y N
n : Ω → PN(H),

n ∈ {0, 1, . . . , N2}, N ∈ N, given by Y N
0 = ξ and

Y N
n+1 = PN eA T

N2

(

Y N
n +

T

N2
· F(Y N

n ) + B(Y N
n )

(

W N
(n+1)T

N2

− W N
nT
N2

)

+

∫ (n+1)T

N2

nT
N2

B′(Y N
n )

(
∫ s

nT
N2

B(Y N
n ) dW N

u

)

dW N
s

)

P-a.s. for all n ∈ {0, 1, . . . , N2 − 1}, N ∈ N.
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Y N
n : Ω → PN(H), n ∈ {0, 1, . . . , N2}, N ∈ N, given by Y N

0 = PN(ξ) and

Y N
n+1 = PN eA T

N2

(

Y N
n +

T

N2
· F(Y N

n ) + B(Y N
n )

(

W N
(n+1)T

N2

− W N
nT
N2

)

+

∫ (n+1)T

N2

nT
N2

B′(Y N
n )

(
∫ s

nT
N2

B(Y N
n ) dW N

u

)

dW N
s

)

P-a.s. for all n ∈ {0, 1, . . . , N2 − 1}, N ∈ N. A key observation is

∫ (n+1)T

N2

nT
N2

B′(Y N
n )

(
∫ s

nT
N2

B(Y N
n ) dW N

u

)

dW N
s

=
1

2

(
∂

∂y
b

)

(·, Y N
n )·b(·, Y N

n )·

((

W N
(n+1)T

N2

− W N
nT
N2

)2

−
T

N2

N∑

j=1

µj(gj)
2

)

P-a.s. for all n ∈ {0, 1, . . . , N2 − 1}, N ∈ N where (µj)j∈N and (gj)j∈N are

the eigenvalues and eigenfunctions of Q respectively.
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Theorem (J & Röckner, 2010)

There exist Cr > 0, r ∈ (0, 2), such that

(

E

[∫ 1

0

∣
∣XT (x) − Y N

N2(x)
∣
∣2 dx

]) 1
2

≤ Cr · N(r−2)

holds for all N ∈ N and all arbitrarily small r ∈ (0, 2).

Y N
N2 converges to XT with order 2−

N3 random variables are needed to simulate Y N
N2

Conclusion: about O(ε−
3
2 ) random variables are needed to achieve the

desired precision ε > 0
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Numerical example

Consider the SPDE

dXt(x) =

[
1

20

∂2

∂x2
Xt(x) + 1 − Xt(x)

]

dt +
Xt(x)

1 + Xt(x)2
dWt(x)

with Xt(0) = Xt(1) = 0 and X0(x) = 0 for x ∈ (0, 1) and t ∈ [0, T ] with

T = 1.

We plot
(

E

[∫ 1

0

∣
∣
∣XT (x) − Z N

N4(x)
∣
∣
∣

2
dx

]) 1
2

and
(

E

[∫ 1

0

∣
∣
∣XT (x) − Y N

N2(x)
∣
∣
∣

2
dx

]) 1
2

for different N ∈ N.
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Linear implicit Euler scheme
New algorithm in this article
Order lines 2/3, 2/5
Approximation error 1/1000

How is this result related to Müller-Gronbach and Ritter’s complexity

bound ?
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A two-dimensional stochastic heat equation

Let d = 2 and consider the SPDE

dXt(x1, x2) =

[
1

50

(
∂2

∂x2
1

+
∂2

∂x2
2

)

Xt(x1, x2)

]

dt + Xt(x1, x2) dWt (x1, x2)

with Xt |∂(0,1)2 ≡ 0 and X0(x1, x2) = 2 sin(πx1) sin(πx2) for x1, x2 ∈ (0, 1)
and t ∈ [0, 1] with the covariance operator Q : H → H given by

(Qv)(x1, x2) =
∞∑

j1,j2=1

2 sin(j1πx1) sin(j2πx2)

(j1 + j2)4

∫ 1

0

∫ 1

0

sin(j1πy1) sin(j2πy2) v(y1, y2) dy1 dy2

for all x1, x2 ∈ (0, 1) and all v ∈ H.
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Linear implicit Euler scheme
New algorithm in this article
Order lines 1/2, 1/3
Approximation error 1/1000

Reference: “A Break of the Complexity of the Numerical Approximation of

Nonlinear SPDEs with Multiplicative Noise” (J & Röckner; arXiv 2010)
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Reconsider the SPDE and the Exponential Euler approximation

Reconsider the SPDE

dXt =
[

AXt + F(Xt)
]

dt + B(Xt) dWt , X0 = ξ

for t ∈ [0, T ]. SPDE in the mild form

Xt = eAtX0 +

∫ t

0

eA(t−s)F(Xs) ds +

∫ t

0

eA(t−s)B(Xs) dWs

for all t ∈ [0, T ]. Exponential Euler approximation:

Xt ≈ eAt X0 + A−1
(

eAt − I
)

F(X0) +

∫ t

0

eA(t−s)B(X0) dWs
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A stochastic Ginzburg-Landau PDE with additive space-time white

noise

Consider the SPDE

dXt(x) =
[
∆Xt(x) + Xt(x) − Xt(x)3

]
dt + dWt(x)

with Xt(0) = Xt(1) = 0 and X0 = 0 for x ∈ (0, 1) and t ∈ [0, T ] on

H = L2((0, 1), R) with T = 1 and where (Wt)t∈[0,T ] is a cylindrical

I-Wiener process on H here.

Goal: Compute

XT (ω, x), x ∈ [0, 1],

with the precision of two decimals, i.e. with the precision ε = 1
100 , for one

random ω ∈ Ω.
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Linear implicit Euler scheme and spectral Galerkin approximations

Z N
n : Ω → PN(H), n ∈ {0, 1, . . . , N2}, N ∈ N, given by Z N

0 = 0 and

Z N
n+1 =

(

I −
T

N2
A

)−1
(

Z N
n +

T

N2
· (PNF)(Z N

n ) +

∫ (n+1)T

N2

nT
N2

PN dWs

)

P-a.s. for all n ∈ {0, 1, . . . , N2 − 1} and all N ∈ N.

N2 time steps are used in (Z N
n )n∈{0,1,...,N2}

Z N
n ∈ PN(H) for all n ∈ {0, 1, . . . , N2} and PN(H) is N-dimensional

N2
︸︷︷︸

time steps

· N
︸︷︷︸

dim(PN(H))

= N3 independent standard normal random

variables needed to simulate Z N
N2 ≈ XT
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Linear implicit Euler scheme
Approximation error 1/100

Linear implicit Euler scheme: Z N
N2 with N = 8192 (N3 = 81933 ≈

0.5 · 1012 random variables) achieves the desired precision ε = 1
100
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MATLAB code for Z N
N2 with N = 8192

1 N = 8192; M = 67108864; A = −p i ^2∗ (1 :N) . ^ 2 ; Y = zeros (1 ,N ) ;

2 f o r m=1:M

3 y = dst (Y) ∗ s q r t ( 2 ) ;

4 Y = (Y + i d s t ( y−y . ^ 3 ) / s q r t ( 2 ) /M + randn (1 ,N) / s q r t (M) ) . / ( 1 − A/M) ;

5 end

6 p l o t ( ( 0 :N+ 1 ) / (N+1) , [ 0 , ds t (Y)∗ s q r t ( 2 ) , 0 ] ) ;

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: ≈ 6 days and 22 hours
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N2 with N = 8192 (N3 = 81933 ≈
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100

Exponential Euler scheme: Y N
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Linear implicit Euler scheme: Z N
N2 with N = 8192 (N3 = 81933 ≈

0.5 · 1012 random variables) achieves the desired precision ε = 1
100

Exponential Euler scheme: Y N
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random variables) achieves the desired precision ε = 1
100
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MATLAB code for Y N
N with N = 64

1 N = 8192; M = 67108864; A = −p i ^2∗ (1 :N) . ^ 2 ; Y = zeros (1 ,N ) ;

2 f o r m=1:M

3 y = dst (Y) ∗ s q r t ( 2 ) ;

4 Y = (Y + i d s t ( y−y . ^ 3 ) / s q r t ( 2 ) /M + randn (1 ,N) / s q r t (M) ) . / ( 1 − A/M) ;

5 end

6 p l o t ( ( 0 :N+ 1 ) / (N+1) , [ 0 , ds t (Y)∗ s q r t ( 2 ) , 0 ] ) ;

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: ≈ 6 days and 22 hours
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MATLAB code for Y N
N with N = 64

1 N = 8192; M = 67108864; A = −p i ^2∗ (1 :N) . ^ 2 ; Y = zeros (1 ,N ) ;

2 Q = sqrt ( ( exp(2 ∗A/M) −1) /2 . /A) ;
3 f o r m=1:M

4 y = dst (Y) ∗ s q r t ( 2 ) ;

5 Y = (Y + i d s t ( y−y . ^ 3 ) / s q r t ( 2 ) /M + randn (1 ,N) / s q r t (M) ) . / ( 1 − A/M) ;

6 end

7 p l o t ( ( 0 :N+ 1 ) / (N+1) , [ 0 , ds t (Y)∗ s q r t ( 2 ) , 0 ] ) ;

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: ≈ 6 days and 22 hours
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MATLAB code for Y N
N with N = 64

1 N = 8192; M = 67108864; A = −p i ^2∗ (1 :N) . ^ 2 ; Y = zeros (1 ,N ) ;

2 Q = sqrt ( ( exp(2 ∗A/M) −1) /2 . /A) ;
3 f o r m=1:M

4 y = dst (Y) ∗ s q r t ( 2 ) ;

5 Y = exp (A/M) . ∗Y+(exp (A/M) −1). /A.∗ i ds t ( y−y . ^ 3 ) / sqrt (2 )+Q. ∗ randn (1 ,N) ;

6 end

7 p l o t ( ( 0 :N+ 1 ) / (N+1) , [ 0 , ds t (Y)∗ s q r t ( 2 ) , 0 ] ) ;

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: ≈ 6 days and 22 hours
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MATLAB code for Y N
N with N = 64

1 N = 4096 ; M = 67108864; A = −p i ^2∗ (1 :N) . ^ 2 ; Y = zeros (1 ,N ) ;

2 Q = sqrt ( ( exp(2 ∗A/M) −1) /2 . /A) ;
3 f o r m=1:M

4 y = dst (Y) ∗ s q r t ( 2 ) ;

5 Y = exp (A/M) . ∗Y+(exp (A/M) −1). /A.∗ i ds t ( y−y . ^ 3 ) / sqrt (2 )+Q. ∗ randn (1 ,N) ;

6 end

7 p l o t ( ( 0 :N+ 1 ) / (N+1) , [ 0 , ds t (Y)∗ s q r t ( 2 ) , 0 ] ) ;

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: ≈ 6 days and 22 hours
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MATLAB code for Y N
N with N = 64

1 N = 4096 ; M = 64 ; A = −p i ^2∗ (1 :N) . ^ 2 ; Y = zeros (1 ,N ) ;

2 Q = sqrt ( ( exp(2 ∗A/M) −1) /2 . /A) ;
3 f o r m=1:M

4 y = dst (Y) ∗ s q r t ( 2 ) ;

5 Y = exp (A/M) . ∗Y+(exp (A/M) −1). /A.∗ i ds t ( y−y . ^ 3 ) / sqrt (2 )+Q. ∗ randn (1 ,N) ;

6 end

7 p l o t ( ( 0 :N+ 1 ) / (N+1) , [ 0 , ds t (Y)∗ s q r t ( 2 ) , 0 ] ) ;

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: ≈ 6 days and 22 hours
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MATLAB code for Y N
N with N = 64

1 N = 4096 ; M = 64 ; A = −p i ^2∗ (1 :N) . ^ 2 ; Y = zeros (1 ,N ) ;

2 Q = sqrt ( ( exp(2 ∗A/M) −1) /2 . /A) ;
3 f o r m=1:M

4 y = dst (Y) ∗ s q r t ( 2 ) ;

5 Y = exp (A/M) . ∗Y+(exp (A/M) −1). /A.∗ i ds t ( y−y . ^ 3 ) / sqrt (2 )+Q. ∗ randn (1 ,N) ;

6 end

7 p l o t ( ( 0 :N+ 1 ) / (N+1) , [ 0 , ds t (Y)∗ s q r t ( 2 ) , 0 ] ) ;

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: ≈ 6 days and 22 hours

Exponential Euler scheme: ≈ 0.48 seconds
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