Taylor Expansions and Numerical Approximations for Stochastic Partial Differential Equations

A. Jentzen

Joint works with P. E. Kloeden and M. Röckner

Faculty of Mathematics
Bielefeld University

12th August 2010
Content

1. Taylor expansions for SODEs
2. Taylor expansions for SPDEs
3. A new numerical method for SPDEs with non-additive noise
4. A new numerical method for SPDEs with additive noise
Content

1. Taylor expansions for SODEs
2. Taylor expansions for SPDEs
3. A new numerical method for SPDEs with non-additive noise
4. A new numerical method for SPDEs with additive noise
Let $T > 0$ and let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $f, g : \mathbb{R} \to \mathbb{R}$ be smooth functions and let $(W_t)_{t \in [0, T]}$ be a scalar Brownian motion.

Consider the SODE:

$$dX_t = f(X_t) \, dt + g(X_t) \, dW_t,$$

which is understood as

$$X_t = X_0 + \int_0^t f(X_s) \, ds + \int_0^t g(X_s) \, dW_s$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Applying Itô’s formula to the integrands above yields

$$X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) \cdot g(X_0) \cdot \left((W_t)^2 - t \right) \quad \mathbb{P}\text{-a.s.}$$

Milstein’s approximation (1974).
Let $T > 0$ and let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $f, g : \mathbb{R} \to \mathbb{R}$ be smooth functions and let $(W_t)_{t \in [0,T]}$ be a scalar Brownian motion. Consider the SODE:

$$dX_t = f(X_t) \, dt + g(X_t) \, dW_t,$$

which is understood as

$$X_t = X_0 + \int_0^t f(X_s) \, ds + \int_0^t g(X_s) \, dW_s$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Applying Itô's formula to the integrands above yields

$$X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) \cdot g(X_0) \cdot \left((W_t)^2 - t \right) \quad \mathbb{P}$-a.s.$$

Let $T > 0$ and let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $f, g : \mathbb{R} \to \mathbb{R}$ be smooth functions and let $(W_t)_{t \in [0, T]}$ be a scalar Brownian motion. Consider the SODE:

$$dX_t = f(X_t) \, dt + g(X_t) \, dW_t,$$

which is understood as

$$X_t = X_0 + \int_0^t f(X_s) \, ds + \int_0^t g(X_s) \, dW_s$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Applying Itô’s formula to the integrands above yields

$$X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot \int_0^t dW_s + g'(X_0) \cdot g(X_0) \cdot \int_0^t \int_0^s dW_u \, dW_s$$

$$= X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) \cdot g(X_0) \cdot (W_t^2 - t) \quad \mathbb{P}\text{-a.s.}$$

Milstein’s approximation (1974).
Let $T > 0$ and let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $f, g : \mathbb{R} \to \mathbb{R}$ be smooth functions and let $(W_t)_{t \in [0, T]}$ be a scalar Brownian motion.

Consider the SODE:

$$
\frac{dX_t}{dt} = f(X_t) \frac{dt}{dt} + g(X_t) \frac{dW_t}{dW_t},
$$

which is understood as

$$
X_t = X_0 + \int_0^t f(X_s) \, ds + \int_0^t g(X_s) \, dW_s
$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Applying Itô’s formula to the integrands above yields

$$
X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) g(X_0) \cdot \left((W_t)^2 - t \right)
$$

\mathbb{P}-a.s.

Milstein’s approximation (1974).
Let $T > 0$ and let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $f, g : \mathbb{R} \rightarrow \mathbb{R}$ be smooth functions and let $(W_t)_{t \in [0, T]}$ be a scalar Brownian motion.

Consider the SODE:

$$dX_t = f(X_t) \, dt + g(X_t) \, dW_t,$$

which is understood as

$$X_t = X_0 + \int_0^t f(X_s) \, ds + \int_0^t g(X_s) \, dW_s$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Applying Itô’s formula to the integrands above yields

$$X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot \int_0^t dW_s + g'(X_0) \cdot g(X_0) \cdot \int_0^t \int_s^t dW_u \, dW_s$$

$$= X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) \cdot g(X_0) \cdot ((W_t)^2 - t)$$

\mathbb{P}-a.s.

Milstein’s approximation (1974).
Let $T > 0$ and let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $f, g : \mathbb{R} \rightarrow \mathbb{R}$ be smooth functions and let $(W_t)_{t \in [0, T]}$ be a scalar Brownian motion.

Consider the SODE:

$$dX_t = f(X_t) \, dt + g(X_t) \, dW_t,$$

which is understood as

$$X_t = X_0 + \int_0^t f(X_s) \, ds + \int_0^t g(X_s) \, dW_s$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Applying Itô’s formula to the integrands above yields

$$X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot \int_0^t dW_s + g'(X_0) g(X_0) \cdot \int_0^t \int_0^s \, dW_u \, dW_s$$

$$= X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) g(X_0) \cdot ((W_t)^2 - t)$$

\mathbb{P}-a.s.

Milstein’s approximation (1974).
Let $T > 0$ and let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $f, g : \mathbb{R} \to \mathbb{R}$ be smooth functions and let $(W_t)_{t \in [0, T]}$ be a scalar Brownian motion.

Consider the SODE:

$$dX_t = f(X_t) \, dt + g(X_t) \, dW_t,$$

which is understood as

$$X_t = X_0 + \int_0^t f(X_s) \, ds + \int_0^t g(X_s) \, dW_s$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Applying Itô’s formula to the integrands above yields

$$X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) \cdot g(X_0) \cdot (W_t^2 - t)$$

\mathbb{P}-a.s.

Milstein’s approximation (1974).
Let $T > 0$ and let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $f, g : \mathbb{R} \to \mathbb{R}$ be smooth functions and let $(W_t)_{t \in [0, T]}$ be a scalar Brownian motion.

Consider the SODE:

$$dX_t = f(X_t) \, dt + g(X_t) \, dW_t,$$

which is understood as

$$X_t = X_0 + \int_0^t f(X_s) \, ds + \int_0^t g(X_s) \, dW_s$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Applying Itô’s formula to the integrands above yields

$$X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) \cdot g(X_0) \cdot \left((W_t)^2 - t\right)$$

\mathbb{P}-a.s.

Milstein’s approximation (1974).
Let $T > 0$ and let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $f, g : \mathbb{R} \to \mathbb{R}$ be smooth functions and let $(W_t)_{t \in [0, T]}$ be a scalar Brownian motion.

Consider the SODE:

$$dX_t = f(X_t) \, dt + g(X_t) \, dW_t,$$

which is understood as

$$X_t = X_0 + \int_0^t f(X_s) \, ds + \int_0^t g(X_s) \, dW_s$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Applying Itô’s formula to the integrands above yields

$$X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot \int_0^t dW_s + g'(X_0) \cdot g(X_0) \cdot \int_0^t \int_0^s dW_u \, dW_s$$

$$= X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) \cdot g(X_0) \cdot ((W_t)^2 - t)$$

\mathbb{P}-a.s.

Milstein’s approximation (1974).
Let $T > 0$ and let $(Ω, F, P)$ be a probability space. Let $f, g : \mathbb{R} \to \mathbb{R}$ be smooth functions and let $(W_t)_{t \in [0, T]}$ be a scalar Brownian motion.

Consider the SODE:

$$dX_t = f(X_t) \, dt + g(X_t) \, dW_t,$$

which is understood as

$$X_t = X_0 + \int_0^t f(X_s) \, ds + \int_0^t g(X_s) \, dW_s$$

P-a.s. for all $t \in [0, T]$. Applying Itô’s formula to the integrands above yields

$$X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot \int_0^t dW_s + g'(X_0) \cdot g(X_0) \cdot \int_0^t \int_0^s dW_u \, dW_s$$

$$= X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) \cdot g(X_0) \cdot (W_t^2 - t)$$

P-a.s.

Milstein’s approximation (1974).
Reconsider Milstein’s approximation:

\[X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) g(X_0) \cdot ((W_t)^2 - t) \]

The corresponding numerical scheme, the so-called **Milstein scheme** (or also Taylor scheme of (strong) order 1.0), is then given by \(Y_N^0 = X_0 \) and

\[
Y_{n+1}^N = Y_n^N + f(Y_n^N) \cdot \frac{T}{N} + g(Y_n^N) \cdot \left(W_{(n+1)T}^N - W_{nT}^N \right) \]
\[
+ \frac{1}{2} \cdot g'(Y_n^N) g(Y_n^N) \cdot \left(\left(W_{(n+1)T}^N - W_{nT}^N \right)^2 - \frac{T}{N} \right)
\]

for every \(n \in \{0, 1, \ldots, N - 1\} \), \(N \in \mathbb{N} \) and is of (strong) order 1.

It is very easy to simulate and impressively efficient for one-dimensional SODEs in comparison to e.g. Euler’s method which is of (strong) order \(\frac{1}{2} \).
Reconsider Milstein’s approximation:

\[X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) g(X_0) \cdot ((W_t)^2 - t) \]

The corresponding numerical scheme, the so-called Milstein scheme (or also Taylor scheme of (strong) order 1.0), is then given by \(Y_0^N = X_0 \) and

\[Y^N_{n+1} = Y^N_n + f(Y^N_n) \cdot \frac{T}{N} + g(Y^N_n) \cdot \left(W^{(n+1)T}_N - W^{nT}_N \right) + \frac{1}{2} \cdot g'(Y^N_n) g(Y^N_n) \cdot \left(\left(W^{(n+1)T}_N - W^{nT}_N \right)^2 - \frac{T}{N} \right) \]

for every \(n \in \{0, 1, \ldots, N - 1\} \), \(N \in \mathbb{N} \) and is of (strong) order 1.

It is very easy to simulate and impressively efficient for one-dimensional SODEs in comparison to e.g. Euler’s method which is of (strong) order \(\frac{1}{2} \).
Reconsider Milstein’s approximation:

\[X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) g(X_0) \cdot ((W_t)^2 - t) \]

The corresponding numerical scheme, the so-called **Milstein scheme** (or also Taylor scheme of (strong) order 1.0), is then given by \(Y_0^N = X_0 \) and

\[
Y_{n+1}^N = Y_n^N + f(Y_n^N) \cdot \frac{T}{N} + g(Y_n^N) \cdot \left(W_{\frac{(n+1)T}{N}} - W_{\frac{nT}{N}} \right) \\
+ \frac{1}{2} \cdot g'(Y_n^N) g(Y_n^N) \cdot \left(\left(W_{\frac{(n+1)T}{N}} - W_{\frac{nT}{N}} \right)^2 - \frac{T}{N} \right)
\]

for every \(n \in \{0, 1, \ldots, N - 1\} \), \(N \in \mathbb{N} \) and is of (strong) order 1.

It is very easy to simulate and impressively efficient for one-dimensional SODEs in comparison to e.g. Euler’s method which is of (strong) order \(\frac{1}{2} \).
Reconsider Milstein’s approximation:

\[X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) g(X_0) \cdot \left((W_t)^2 - t \right) \]

The corresponding numerical scheme, the so-called Milstein scheme (or also Taylor scheme of (strong) order 1.0), is then given by \(Y^N_0 \equiv X_0 \) and

\[
Y^N_{n+1} = Y^N_n + f(Y^N_n) \cdot \frac{T}{N} + g(Y^N_n) \cdot \left(W_{\frac{(n+1)T}{N}} - W_{\frac{nT}{N}} \right) \\
+ \frac{1}{2} \cdot g'(Y^N_n) g(Y^N_n) \cdot \left(\left(W_{\frac{(n+1)T}{N}} - W_{\frac{nT}{N}} \right)^2 - \frac{T}{N} \right)
\]

for every \(n \in \{0, 1, \ldots, N - 1\}, N \in \mathbb{N} \) and is of (strong) order 1.

It is very easy to simulate and impressively efficient for one-dimensional SODEs in comparison to e.g. Euler’s method which is of (strong) order \(\frac{1}{2} \).
Reconsider Milstein’s approximation:

\[X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) g(X_0) \cdot ((W_t)^2 - t) \]

The corresponding numerical scheme, the so-called Milstein scheme (or also Taylor scheme of (strong) order 1.0), is then given by \(Y_0^N = X_0 \) and

\[
Y_{n+1}^N = Y_n^N + f(Y_n^N) \cdot \frac{T}{N} + g(Y_n^N) \cdot \left(W_{\frac{(n+1)T}{N}} - W_{\frac{nT}{N}} \right)
+ \frac{1}{2} \cdot g'(Y_n^N) g(Y_n^N) \cdot \left(\left(W_{\frac{(n+1)T}{N}} - W_{\frac{nT}{N}} \right)^2 - \frac{T}{N} \right)
\]

for every \(n \in \{0, 1, \ldots, N - 1\} \), \(N \in \mathbb{N} \) and is of (strong) order 1.

It is very easy to simulate and impressively efficient for one-dimensional SODEs in comparison to e.g. Euler’s method which is of (strong) order \(\frac{1}{2} \).
Reconsider Milstein’s approximation:

\[X_t \approx X_0 + f(X_0) \cdot t + g(X_0) \cdot W_t + \frac{1}{2} \cdot g'(X_0) \cdot g(X_0) \cdot ((W_t)^2 - t) \]

The corresponding numerical scheme, the so-called **Milstein scheme** (or also Taylor scheme of (strong) order 1.0), is then given by \(Y^N_0 = X_0 \) and

\[
Y^N_{n+1} = Y^N_n + f(Y^N_n) \cdot \frac{T}{N} + g(Y^N_n) \cdot \left(W_{\frac{(n+1)T}{N}} - W_{\frac{nT}{N}} \right) \\
+ \frac{1}{2} \cdot g'(Y^N_n) \cdot g(Y^N_n) \cdot \left(\left(W_{\frac{(n+1)T}{N}} - W_{\frac{nT}{N}} \right)^2 - \frac{T}{N} \right)
\]

for every \(n \in \{0, 1, \ldots, N - 1\}, N \in \mathbb{N} \) and is of (strong) order 1.

It is very easy to simulate and impressively efficient for one-dimensional SODEs in comparison to e.g. Euler’s method which is of (strong) order \(\frac{1}{2} \).
The general theory of Taylor expansions for SODEs and the numerical schemes based on them can be found in the monographs

- Kloeden & Platen (1992)
- Milstein (1995)

(Stochastic Taylor expansions).

Essential constituents:

\[X_t \approx X_0 + f(X_0) \cdot \int_0^t ds + g(X_0) \cdot \int_0^t dW_s + g'(X_0) g(X_0) \cdot \int_0^t \int_0^s dW_u dW_s \]

Method for deriving Taylor expansions:

- Iterated application of the stochastic fundamental theorem of calculus, i.e. Itô’s formula.
The general theory of Taylor expansions for SODEs and the numerical schemes based on them can be found in the monographs

- Kloeden & Platen (1992)
- Milstein (1995)

(Stochastic Taylor expansions).

Essential constituents:

\[X_t \approx X_0 + f(X_0) \cdot \int_0^t ds + g(X_0) \cdot \int_0^t dW_s + g'(X_0) g(X_0) \cdot \int_0^t \int_0^s dW_u \, dW_s \]

Method for deriving Taylor expansions:

- Iterated application of the stochastic fundamental theorem of calculus, i.e. Itô’s formula.
The general theory of Taylor expansions for SODEs and the numerical schemes based on them can be found in the monographs

- Kloeden & Platen (1992)
- Milstein (1995)

(Stochastic Taylor expansions).

Essential constituents:

\[X_t \approx X_0 + f(X_0) \cdot \int_0^t ds + g(X_0) \cdot \int_0^t dW_s + g'(X_0) g(X_0) \cdot \int_0^t \int_0^s dW_u dW_s \]

Method for deriving Taylor expansions:

- Iterated application of the stochastic fundamental theorem of calculus, i.e. Itô’s formula.
The general theory of Taylor expansions for SODEs and the numerical schemes based on them can be found in the monographs

- Kloeden & Platen (1992)
- Milstein (1995)

(Stochastic Taylor expansions).

Essential constituents:

\[X_t \approx X_0 + f(X_0) \cdot \int_0^t ds + g(X_0) \cdot \int_0^t dW_s + g'(X_0) g(X_0) \cdot \int_0^t \int_0^s dW_u dW_s \]

Method for deriving Taylor expansions:

- Iterated application of the stochastic fundamental theorem of calculus, i.e. Itô’s formula.
Content

1. Taylor expansions for SODEs

2. Taylor expansions for SPDEs

3. A new numerical method for SPDEs with non-additive noise

4. A new numerical method for SPDEs with additive noise
Itô’s formula for SPDEs? In general not a semi-martingale

Let \((H, \| \cdot \|)\) be a reasonable state space of a SPDE.

- Krylov & Rozovskii (1979): Itô formula for \(F : H \to \mathbb{R}, F(v) = \|v\|^2\), \(v \in H\), with powerful consequences to the variational approach, see also Gyöngy & Krylov (1981) and Prévot & Röckner (2007)
- Gradinaru, Nourdin & Tindel (2005): Itô formula for \(F : H \to \mathbb{R}\) smooth
- Zambotti (2006): Itô formula for \(F : H \to \mathbb{R}\) smooth

For the Taylor expansion approach for SODEs, one would need an Itô formula for \(F : H \to H\) smooth.

If the solution of the SPDE is spatially smooth and the solution is a semi-martingale, then Taylor expansions & Taylor schemes for SPDEs in

- Grecksch & Kloeden (1996), see also Kloeden & Shott (2001)
- Buckdahn & Ma (2002)
Itô’s formula for SPDEs? In general not a semi-martingale

Let \((H, \| \cdot \|)\) be a reasonable state space of a SPDE.

- Krylov & Rozovskii (1979): Itô formula for \(F : H \rightarrow \mathbb{R}, F(v) = \|v\|^2\), \(v \in H\), with powerful consequences to the variational approach, see also Gyöngy & Krylov (1981) and Prévot & Röckner (2007)
- Gradinaru, Nourdin & Tindel (2005): Itô formula for \(F : H \rightarrow \mathbb{R}\) smooth
- Zambotti (2006): Itô formula for \(F : H \rightarrow \mathbb{R}\) smooth

For the Taylor expansion approach for SODEs, one would need an Itô formula for \(F : H \rightarrow H\) smooth.

If the solution of the SPDE is spatially smooth and the solution is a semi-martingale, then Taylor expansions & Taylor schemes for SPDEs in

- Grecksch & Kloeden (1996), see also Kloeden & Shott (2001)
- Buckdahn & Ma (2002)
Itô’s formula for SPDEs? In general not a semi-martingale

Let \((H, \| \cdot \|)\) be a reasonable state space of a SPDE.

- Krylov & Rozovskii (1979): Itô formula for \(F : H \to \mathbb{R}, F(v) = \|v\|^2\), \(v \in H\), with powerful consequences to the variational approach, see also Gyöngy & Krylov (1981) and Prévot & Röckner (2007).

- Gradinaru, Nourdin & Tindel (2005): Itô formula for \(F : H \to \mathbb{R}\) smooth.

For the Taylor expansion approach for SODEs, one would need an Itô formula for \(F : H \to H\) smooth.

If the solution of the SPDE is spatially smooth and the solution is a semi-martingale, then Taylor expansions & Taylor schemes for SPDEs in

- Grecksch & Kloeden (1996), see also Kloeden & Shott (2001)
- Buckdahn & Ma (2002)
Itô’s formula for SPDEs? In general not a semi-martingale

Let \((H, \|\cdot\|)\) be a reasonable state space of a SPDE.

- Krylov & Rozovskii (1979): Itô formula for \(F : H \rightarrow \mathbb{R}, F(v) = \|v\|^2\), \(v \in H\), with powerful consequences to the variational approach, see also Gyöngy & Krylov (1981) and Prévot & Röckner (2007)
- Gradinaru, Nourdin & Tindel (2005): Itô formula for \(F : H \rightarrow \mathbb{R}\) smooth
- Zambotti (2006): Itô formula for \(F : H \rightarrow \mathbb{R}\) smooth

For the Taylor expansion approach for SODEs, one would need an Itô formula for \(F : H \rightarrow H\) smooth.

If the solution of the SPDE is spatially smooth and the solution is a semi-martingale, then Taylor expansions & Taylor schemes for SPDEs in

- Grecksch & Kloeden (1996), see also Kloeden & Shott (2001)
- Buckdahn & Ma (2002)
Itô’s formula for SPDEs? In general not a semi-martingale

Let \((H, \| \cdot \|)\) be a reasonable state space of a SPDE.

- Krylov & Rozovskii (1979): Itô formula for \(F : H \rightarrow \mathbb{R}, F(v) = \|v\|^2\), \(v \in H\), with powerful consequences to the variational approach, see also Gyöngy & Krylov (1981) and Prévot & Röckner (2007)
- Gradinaru, Nourdin & Tindel (2005): Itô formula for \(F : H \rightarrow \mathbb{R}\) smooth
- Zambotti (2006): Itô formula for \(F : H \rightarrow \mathbb{R}\) smooth

For the Taylor expansion approach for SODEs, one would need an Itô formula for \(F : H \rightarrow H\) smooth.

If the solution of the SPDE is spatially smooth and the solution is a semi-martingale, then Taylor expansions & Taylor schemes for SPDEs in

- Grecksch & Kloeden (1996), see also Kloeden & Shott (2001)
- Buckdahn & Ma (2002)
Itô’s formula for SPDEs? In general not a semi-martingale

Let \((H, \| \cdot \|)\) be a reasonable state space of a SPDE.

- Krylov & Rozovskii (1979): Itô formula for \(F : H \to \mathbb{R}, F(v) = \|v\|^2\), \(v \in H\), with powerful consequences to the variational approach, see also Gyöngy & Krylov (1981) and Prévot & Röckner (2007)
- Gradinaru, Nourdin & Tindel (2005): Itô formula for \(F : H \to \mathbb{R}\) smooth
- Zambotti (2006): Itô formula for \(F : H \to \mathbb{R}\) smooth

For the Taylor expansion approach for SODEs, one would need an Itô formula for \(F : H \to H\) smooth.

If the solution of the SPDE is spatially smooth and the solution is a semi-martingale, then Taylor expansions & Taylor schemes for SPDEs in

- Grecksch & Kloeden (1996), see also Kloeden & Shott (2001)
- Buckdahn & Ma (2002)
Fix $T > 0$, a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with normal filtration $(\mathcal{F}_t)_{t \in [0, T]}$ and two \mathbb{R}-Hilbert spaces H and U.

(A1) Let $A : D(A) \subset H \to H$ be a bijective linear operator with negative compact inverse.

(A2) Let $W : [0, T] \times \Omega \to U$ be a standard Q-Wiener process with covariance operator $Q : U \to U$. Let $U_0 := Q^{\frac{1}{2}}(U)$.

(A3) Let $F : D((-A)^{\beta}) \to H$ and $B : D((-A)^{\beta}) \to \text{HS}(U_0, H)$ with $\beta \in [0, 1)$ be twice continuously Fréchet differentiable with appropriate globally bounded derivatives.

(A4) Let $\xi : \Omega \to D(A)$ be $\mathcal{F}_0/\mathcal{B}(D(A))$-measurable with $\mathbb{E} \|\xi\|_{D(A)}^4 < \infty$.

SPDE Setting
SPDE Setting

Fix $T > 0$, a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with normal filtration $(\mathcal{F}_t)_{t \in [0, T]}$ and two \mathbb{R}-Hilbert spaces H and U.

(A1) Let $A : D(A) \subset H \to H$ be a bijective linear operator with negative compact inverse.

(A2) Let $W : [0, T] \times \Omega \to U$ be a standard Q-Wiener process with covariance operator $Q : U \to U$. Let $U_0 := Q^{\frac{1}{2}}(U)$.

(A3) Let $F : D((-A)^{\beta}) \to H$ and $B : D((-A)^{\beta}) \to HS(U_0, H)$ with $\beta \in [0, 1)$ be twice continuously Fréchet differentiable with appropriate globally bounded derivatives.

(A4) Let $\xi : \Omega \to D(A)$ be $\mathcal{F}_0/\mathcal{B}(D(A))$-measurable with $\mathbb{E} \| \xi \|_{D(A)}^4 < \infty$.
Fix $T > 0$, a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with normal filtration $(\mathcal{F}_t)_{t \in [0,T]}$ and two \mathbb{R}-Hilbert spaces H and U.

A1 Let $A : D(A) \subset H \to H$ be a bijective linear operator with negative compact inverse.

A2 Let $W : [0, T] \times \Omega \to U$ be a standard Q-Wiener process with covariance operator $Q : U \to U$. Let $U_0 := Q^{\frac{1}{2}}(U)$.

A3 Let $F : D((-A)^\beta) \to H$ and $B : D((-A)^\beta) \to HS(U_0, H)$ with $\beta \in [0, 1)$ be twice continuously Fréchet differentiable with appropriate globally bounded derivatives.

A4 Let $\xi : \Omega \to D(A)$ be $\mathcal{F}_0 / \mathcal{B}(D(A))$-measurable with $\mathbb{E} \|\xi\|_{D(A)}^4 < \infty$.
SPDE Setting

Fix $T > 0$, a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with normal filtration $(\mathcal{F}_t)_{t \in [0, T]}$ and two \mathbb{R}-Hilbert spaces H and U.

(A1) Let $A : D(A) \subset H \rightarrow H$ be a bijective linear operator with negative compact inverse.

(A2) Let $W : [0, T] \times \Omega \rightarrow U$ be a standard Q-Wiener process with covariance operator $Q : U \rightarrow U$. Let $U_0 := Q^{\frac{1}{2}}(U)$.

(A3) Let $F : D((-A)^\beta) \rightarrow H$ and $B : D((-A)^\beta) \rightarrow HS(U_0, H)$ with $\beta \in [0, 1)$ be twice continuously Fréchet differentiable with appropriate globally bounded derivatives.

(A4) Let $\xi : \Omega \rightarrow D(A)$ be $\mathcal{F}_0/B(D(A))$-measurable with $\mathbb{E} \|\xi\|_{D(A)}^4 < \infty$.

Fix $T > 0$, a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with normal filtration $(\mathcal{F}_t)_{t \in [0, T]}$ and two \mathbb{R}-Hilbert spaces H and U.

(A1) Let $A : D(A) \subset H \to H$ be a bijective linear operator with negative compact inverse.

(A2) Let $W : [0, T] \times \Omega \to U$ be a standard Q-Wiener process with covariance operator $Q : U \to U$. Let $U_0 := Q^{1/2}(U)$.

(A3) Let $F : D((-A)^{\beta}) \to H$ and $B : D((-A)^{\beta}) \to HS(U_0, H)$ with $\beta \in [0, 1)$ be twice continuously Fréchet differentiable with appropriate globally bounded derivatives.

(A4) Let $\xi : \Omega \to D(A)$ be $\mathcal{F}_0/B(D(A))$-measurable with $\mathbb{E} \| \xi \|^4_{D(A)} < \infty$.
SPDE Setting

Fix $T > 0$, a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with normal filtration $(\mathcal{F}_t)_{t \in [0, T]}$ and two \mathbb{R}-Hilbert spaces H and U.

(A1) Let $A : D(A) \subset H \to H$ be a bijective linear operator with negative compact inverse.

(A2) Let $W : [0, T] \times \Omega \to U$ be a standard Q-Wiener process with covariance operator $Q : U \to U$. Let $U_0 := Q^{\frac{1}{2}}(U)$.

(A3) Let $F : D((-A)^{\beta}) \to H$ and $B : D((-A)^{\beta}) \to HS(U_0, H)$ with $\beta \in [0, 1)$ be twice continuously Fréchet differentiable with appropriate globally bounded derivatives.

(A4) Let $\xi : \Omega \to D(A)$ be $\mathcal{F}_0/B(D(A))$-measurable with $\mathbb{E} \|\xi\|_{D(A)}^4 < \infty$.
Fix $T > 0$, a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with normal filtration $(\mathcal{F}_t)_{t \in [0, T]}$ and two \mathbb{R}-Hilbert spaces H and U.

(A1) Let $A : D(A) \subset H \rightarrow H$ be a bijective linear operator with negative compact inverse.

(A2) Let $W : [0, T] \times \Omega \rightarrow U$ be a standard Q-Wiener process with covariance operator $Q : U \rightarrow U$. Let $U_0 := Q^{\frac{1}{2}}(U)$.

(A3) Let $F : D((-A)^{\beta}) \rightarrow H$ and $B : D((-A)^{\beta}) \rightarrow HS(U_0, H)$ with $\beta \in [0, 1)$ be twice continuously Fréchet differentiable with appropriate globally bounded derivatives.

(A4) Let $\xi : \Omega \rightarrow D(A)$ be $\mathcal{F}_0/B(D(A))$-measurable with $\mathbb{E} \|\xi\|_{D(A)}^4 < \infty$.
SPDE Setting

Fix \(T > 0 \), a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) with normal filtration \((\mathcal{F}_t)_{t \in [0, T]}\) and two \(\mathbb{R}\)-Hilbert spaces \(H\) and \(U\).

(A1) Let \(A : D(A) \subset H \rightarrow H \) be a bijective linear operator with negative compact inverse.

(A2) Let \(W : [0, T] \times \Omega \rightarrow U \) be a standard \(Q\)-Wiener process with covariance operator \(Q : U \rightarrow U \). Let \(U_0 := Q^{\frac{1}{2}}(U) \).

(A3) Let \(F : D((-A)^\beta) \rightarrow H \) and \(B : D((-A)^\beta) \rightarrow HS(U_0, H) \) with \(\beta \in [0, 1) \) be twice continuously Fréchet differentiable with appropriate globally bounded derivatives.

(A4) Let \(\xi : \Omega \rightarrow D(A) \) be \(\mathcal{F}_0/B(D(A)) \)-measurable with \(\mathbb{E} \| \xi \|^4_{D(A)} < \infty \).
Consider the SPDE

\[dX_t = \left[AX_t + F(X_t) \right] dt + B(X_t) dW_t, \quad X_0 = \xi \]

for \(t \in [0, T] \).

SPDE in the mild form

\[X_t = e^{At} \xi + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \).
Consider the SPDE

\[dX_t = \left[AX_t + F(X_t) \right] dt + B(X_t) \, dW_t, \quad X_0 = \xi \]

for \(t \in [0, T] \).

SPDE in the mild form

\[X_t = e^{At} \xi + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \).
Let $d \in \mathbb{N}$ and consider the SPDE

$$dX_t(x) = \left[\kappa \Delta X_t(x) + f(x, X_t(x)) \right] dt + b(x, X_t(x)) \, dW_t(x)$$

with $X_t|_{\partial(0,1)^d} \equiv 0$ and $X_0(x) = \xi(x)$ for $x \in (0,1)^d$ and $t \in [0,T]$. Here

- $U = H = L^2((0,1)^d, \mathbb{R})$,
- $A : D(A) \subset H \rightarrow H$ Laplacian with D.b.c. times $\kappa > 0$ and
- $F : D((-A)^\beta) \rightarrow H$ and $B : D((-A)^\beta) \rightarrow HS(U_0, H)$ given by $(F(v))(x) = f(x, v(x))$ and $(B(v))(x) = b(x, v(x)) \cdot u(x)$ for all $x \in (0,1)^d$, $v \in D((-A)^\beta)$, $u \in U_0$.
Example

Let $d \in \mathbb{N}$ and consider the SPDE

$$dX_t(x) = \left[\kappa \Delta X_t(x) + f(x, X_t(x)) \right] dt + b(x, X_t(x)) \, dW_t(x)$$

with $X_t\vert_{\partial(0,1)^d} \equiv 0$ and $X_0(x) = \xi(x)$ for $x \in (0, 1)^d$ and $t \in [0, T]$. Here

- $U = H = L^2((0, 1)^d, \mathbb{R})$,
- $A: D(A) \subset H \rightarrow H$ Laplacian with D.b.c. times $\kappa > 0$ and
- $F: D((-A)^\beta) \rightarrow H$ and $B: D((-A)^\beta) \rightarrow HS(U_0, H)$ given by $$(F(v))(x) = f(x, v(x)) \text{ and } (B(v))(x) = b(x, v(x)) \cdot u(x)$$

for all $x \in (0, 1)^d$, $v \in D((-A)^\beta)$, $u \in U_0$.
Example

Let $d \in \mathbb{N}$ and consider the SPDE

$$
\begin{align*}
 dX_t(x) &= \left[\kappa \Delta X_t(x) + f(x, X_t(x)) \right] dt + b(x, X_t(x)) dW_t(x)
\end{align*}
$$

with $X_t|_{\partial(0,1)^d} \equiv 0$ and $X_0(x) = \xi(x)$ for $x \in (0,1)^d$ and $t \in [0, T]$. Here

- $U = H = L^2((0,1)^d, \mathbb{R})$,
- $A : D(A) \subset H \rightarrow H$ Laplacian with D.b.c. times $\kappa > 0$ and $F : D((-A)^{\beta}) \rightarrow H$ and $B : D((-A)^{\beta}) \rightarrow HS(U_0, H)$ given by $(F(v))(x) = f(x, v(x))$ and $(B(v))(x) = b(x, v(x)) \cdot u(x)$ for all $x \in (0,1)^d$, $v \in D((-A)^{\beta})$, $u \in U_0$.
Example

Let $d \in \mathbb{N}$ and consider the SPDE

$$dX_t(x) = \left[\kappa \Delta X_t(x) + f(x, X_t(x)) \right] dt + b(x, X_t(x)) \, dW_t(x)$$

with $X_t|_{\partial(0,1)^d} \equiv 0$ and $X_0(x) = \xi(x)$ for $x \in (0,1)^d$ and $t \in [0,T]$. Here

- $U = H = L^2((0,1)^d, \mathbb{R})$,
- $A : D(A) \subset H \to H$ Laplacian with D.b.c. times $\kappa > 0$ and
- $F : D((-A)^\beta) \to H$ and $B : D((-A)^\beta) \to HS(U_0, H)$ given by

 $$(F(v))(x) = f(x, v(x)) \text{ and } (B(v))(x) = b(x, v(x)) \cdot u(x)$$

 for all $x \in (0,1)^d$, $v \in D((-A)^\beta)$, $u \in U_0$.

Example

Let \(d \in \mathbb{N} \) and consider the SPDE

\[
dX_t(x) = \left[\kappa \Delta X_t(x) + f(x, X_t(x)) \right] \, dt + b(x, X_t(x)) \, dW_t(x)
\]

with \(X_t|_{\partial(0,1)^d} \equiv 0 \) and \(X_0(x) = \xi(x) \) for \(x \in (0, 1)^d \) and \(t \in [0, T] \). Here

- \(U = H = L^2((0,1)^d, \mathbb{R}) \),
- \(A : D(A) \subset H \rightarrow H \) Laplacian with D.b.c. times \(\kappa > 0 \) and
- \(F : D((-A)^\beta) \rightarrow H \) and \(B : D((-A)^\beta) \rightarrow HS(U_0, H) \) given by
 \[
 (F(v))(x) = f(x, v(x)) \quad \text{and} \quad (B(v))(x) = b(x, v(x)) \cdot u(x)
 \]
 for all \(x \in (0,1)^d, v \in D((-A)^\beta), u \in U_0 \).
Example

Let $d \in \mathbb{N}$ and consider the SPDE

$$dX_t(x) = \left[\kappa \Delta X_t(x) + f(x, X_t(x)) \right] \, dt + b(x, X_t(x)) \, dW_t(x)$$

with $X_t \big|_{\partial (0,1)^d} \equiv 0$ and $X_0(x) = \xi(x)$ for $x \in (0, 1)^d$ and $t \in [0, T]$. Here

- $U = H = L^2((0,1)^d, \mathbb{R})$,
- $A : D(A) \subset H \rightarrow H$ Laplacian with D.b.c. times $\kappa > 0$ and
- $F : D((-A)^\beta) \rightarrow H$ and $B : D((-A)^\beta) \rightarrow HS(U_0, H)$ given by $(F(v))(x) = f(x, v(x))$ and $(B(v))(x) = b(x, v(x)) \cdot u(x)$ for all $x \in (0, 1)^d$, $v \in D((-A)^\beta)$, $u \in U_0$.
SPDE in mild form

\[X_t = e^{At} \xi + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Subtracting \(X_0 \) gives

\[X_t - X_0 = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \).
SPDE in mild form

\[X_t = e^{At} \xi + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Subtracting \(X_0 \) gives

\[X_t - X_0 = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \).
SPDE in mild form

\[X_t = e^{At} \xi + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Subtracting \(X_0 \) gives

\[X_t - X_0 = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \).
SPDE in mild form

\[X_t = e^{At} \xi + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P}\)-a.s. for all \(t \in [0, T] \). Subtracting \(X_0 \) and using \(\Delta X_t := X_t - X_0 \) give

\[\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P}\)-a.s. for all \(t \in [0, T] \). Classical Taylor approximations:

\[F(X_s) \approx F(X_0) + F'(X_0) \Delta X_s + \frac{1}{2} F''(X_0)(\Delta X_s, \Delta X_s) + \ldots \]

\[B(X_s) \approx B(X_0) + B'(X_0) \Delta X_s + \frac{1}{2} B''(X_0)(\Delta X_s, \Delta X_s) + \ldots \]
SPDE in mild form

\[X_t = e^{At} \xi + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Subtracting \(X_0 \) and using \(\Delta X_t := X_t - X_0 \) give

\[\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Classical Taylor approximations:

\[F(X_s) \approx F(X_0) + F'(X_0) \Delta X_s + \frac{1}{2} F''(X_0)(\Delta X_s, \Delta X_s) + \ldots \]

\[B(X_s) \approx B(X_0) + B'(X_0) \Delta X_s + \frac{1}{2} B''(X_0)(\Delta X_s, \Delta X_s) + \ldots \]
SPDE in mild form

\[X_t = e^{At} \xi + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Subtracting \(X_0 \) and using \(\Delta X_t := X_t - X_0 \) give

\[\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Classical Taylor approximations:

\[F(X_s) \approx F(X_0) + F'(X_0) \Delta X_s + \frac{1}{2} F''(X_0)(\Delta X_s, \Delta X_s) + \ldots \]

\[B(X_s) \approx B(X_0) + B'(X_0) \Delta X_s + \frac{1}{2} B''(X_0)(\Delta X_s, \Delta X_s) + \ldots \]
SPDE in mild form

\[X_t = e^{At} \xi + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Subtracting \(X_0 \) and using \(\Delta X_t := X_t - X_0 \) give

\[\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Classical Taylor approximations:

\[F(X_s) \approx F(X_0) + F'(X_0) \Delta X_s + \frac{1}{2} F''(X_0)(\Delta X_s, \Delta X_s) + \ldots \]

\[B(X_s) \approx B(X_0) + B'(X_0) \Delta X_s + \frac{1}{2} B''(X_0)(\Delta X_s, \Delta X_s) + \ldots \]
Consider

$$\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Omitting first and second summand yields the first simple Taylor approximation for SPDEs

$$\Delta X_t \approx \int_0^t e^{A(t-s)} B(X_0) \, dW_s,$$

i.e.

$$X_t \approx X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s$$

Omitting second summand gives

$$\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s,$$

i.e.

$$X_t \approx e^{At} X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s$$
Consider

$$
\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s
$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Omitting first and second summand yields the first simple Taylor approximation for SPDEs

$$
\Delta X_t \approx \int_0^t e^{A(t-s)} B(X_0) \, dW_s,
$$

i.e.

$$
X_t \approx X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s
$$

Omitting second summand gives

$$
\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s,
$$

i.e.

$$
X_t \approx e^{At} X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s
$$
Consider

\[\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Omitting first and second summand yields the first simple Taylor approximation for SPDEs

\[\Delta X_t \approx \int_0^t e^{A(t-s)} B(X_0) \, dW_s, \]

i.e.

\[X_t \approx X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

Omitting second summand gives

\[\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s, \]

i.e.

\[X_t \approx e^{At} X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]
Consider

\[\Delta X_t = \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s\]

\(\mathbb{P}\)-a.s. for all \(t \in [0, T]\). Omitting first and second summand yields the first simple Taylor approximation for SPDEs

\[\Delta X_t \approx \int_0^t e^{A(t-s)} B(X_0) \, dW_s, \quad \text{i.e.}\]

\[X_t \approx X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s\]

Omitting second summand gives

\[\Delta X_t \approx \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s, \quad \text{i.e.}\]

\[X_t \approx e^{At}X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s\]
Consider

$$\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Omitting first and second summand yields the first simple Taylor approximation for SPDEs

$$\Delta X_t \approx \int_0^t e^{A(t-s)} B(X_0) \, dW_s,$$

i.e.

$$X_t \approx X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s$$

Omitting second summand gives

$$\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s,$$

i.e.

$$X_t \approx e^{At}X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s$$
Consider

\[\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P}\)-a.s. for all \(t \in [0, T] \). Omitting first and second summand yields the first simple Taylor approximation for SPDEs

\[\Delta X_t \approx \int_0^t e^{A(t-s)} B(X_0) \, dW_s, \quad \text{i.e.} \]

\[X_t \approx X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

Omitting second summand gives

\[\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s, \quad \text{i.e.} \]

\[X_t \approx e^{At} X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]
Consider

\[\Delta X_t = \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P}\)-a.s. for all \(t \in [0, T] \). Omitting first and second summand yields the first simple Taylor approximation for SPDEs

\[\Delta X_t \approx \int_0^t e^{A(t-s)} B(X_0) \, dW_s, \quad \text{i.e.} \]

\[X_t \approx X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

Omitting second summand gives

\[\Delta X_t \approx \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s, \quad \text{i.e.} \]

\[X_t \approx e^{At} X_0 + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]
Consider

$$\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Classical Taylor approximations $F(X_s) \approx F(X_0)$ and $B(X_s) \approx B(X_0)$ yield

$$\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s$$
Consider

$$\Delta X_t = \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Classical Taylor approximations $F(X_s) \approx F(X_0)$ and $B(X_s) \approx B(X_0)$ yield

$$\Delta X_t \approx \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s$$
Consider

\[\Delta X_t = \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Classical Taylor approximations \(F(X_s) \approx F(X_0) \) and \(B(X_s) \approx B(X_0) \) yield

\[\Delta X_t \approx \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]
Consider

\[\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Classical Taylor approximations \(F(X_s) \approx F(X_0) \) and \(B(X_s) \approx B(X_0) \) yield

\[\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

\[= \left(\int_0^t e^{A(t-s)} \, ds \right) F(X_0) \]
Consider

\[\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\[\mathbb{P}\text{-a.s. for all } t \in [0, T]. \]

Classical Taylor approximations \(F(X_s) \approx F(X_0) \) and \(B(X_s) \approx B(X_0) \) yield

\[\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s, \text{ i.e.} \]

\[\begin{align*}
= & (\int_0^t e^{A(t-s)} \, ds) F(X_0) \\
= & A^{-1} (e^{At} - I) F(X_0)
\end{align*} \]

\[X_t \approx e^{At} X_0 + A^{-1} (e^{At} - I) F(X_0) + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

Exponential Euler approximation (see the final section for more details).
Consider

\[\Delta X_t = \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Classical Taylor approximations \(F(X_s) \approx F(X_0) \) and \(B(X_s) \approx B(X_0) \) yield

\[\Delta X_t \approx \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s, \text{ i.e.} \]

\[= \left(\int_0^t e^{A(t-s)} ds \right) F(X_0) \]

\[= A^{-1} (e^{At} - I) F(X_0) \]

\[X_t \approx e^{At} X_0 + A^{-1} (e^{At} - I) F(X_0) + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

Exponential Euler approximation (see the final section for more details).
Consider

\[\Delta X_t = \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Classical Taylor approximations \(F(X_s) \approx F(X_0) \) and \(B(X_s) \approx B(X_0) \) yield

\[\Delta X_t \approx \left(e^{At} - I \right) X_0 + \left(\int_0^t e^{A(t-s)} ds \right) F(X_0) + \int_0^t e^{A(t-s)} B(X_0) \, dW_s, \text{ i.e.} \]

\[= \left(\int_0^t e^{A(t-s)} ds \right) F(X_0) = A^{-1} (e^{At} - I) F(X_0) \]

\[X_t \approx e^{At} X_0 + A^{-1} (e^{At} - I) F(X_0) + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

Exponential Euler approximation (see the final section for more details).
Consider

\[\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Classical Taylor approximations \(F(X_s) \approx F(X_0) \) and \(B(X_s) \approx B(X_0) \) yield

\[\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s, \text{ i.e.} \]

\[
= \left(\int_0^t e^{A(t-s)} \, ds \right) F(X_0) \\
= A^{-1} (e^{At} - I) F(X_0)
\]

\[X_t \approx e^{At} X_0 + A^{-1} (e^{At} - I) F(X_0) + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

Exponential Euler approximation (see the final section for more details).
Consider

\[\Delta X_t = \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Using \(B(X_s) \approx B(X_0) + B'(X_0) \Delta X_s \) shows

\[\Delta X_t \approx \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

\[+ \int_0^t e^{A(t-s)} B'(X_0) \Delta X_s \, dW_s \]

Using \(\Delta X_s \approx \int_0^s e^{A(s-u)} B(X_0) \, dW_u \) (first simple Taylor approximation) recursively yields

\[\Delta X_t \approx \left(e^{At} - I \right) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

\[+ \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s \]
Consider

\[\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Using \(B(X_s) \approx B(X_0) + B'(X_0) \Delta X_s \) shows

\[\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

\[+ \int_0^t e^{A(t-s)} B'(X_0) \Delta X_s \, dW_s \]

Using \(\Delta X_s \approx \int_0^s e^{A(s-u)} B(X_0) \, dW_u \) (first simple Taylor approximation) recursively yields

\[\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

\[+ \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s \]
Consider

$$\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s$$

\mathbb{P}-a.s. for all $t \in [0, T]$. Using $B(X_s) \approx B(X_0) + B'(X_0) \Delta X_s$ shows

$$\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s + \int_0^t e^{A(t-s)} B'(X_0) \Delta X_s \, dW_s$$

Using $\Delta X_s \approx \int_0^s e^{A(s-u)} B(X_0) \, dW_u$ (first simple Taylor approximation) recursively yields

$$\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s + \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s$$
Consider

\[\Delta X_t = (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Using \(B(X_s) \approx B(X_0) + B'(X_0) \Delta X_s \) shows

\[\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

\[+ \int_0^t e^{A(t-s)} B'(X_0) \Delta X_s \, dW_s \]

Using \(\Delta X_s \approx \int_0^s e^{A(s-u)} B(X_0) \, dW_u \) (first simple Taylor approximation)

recursively yields

\[\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

\[+ \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s \]
Consider

\[\Delta X_t = (e^{At} - I)X_0 + \int_0^t e^{A(t-s)}F(X_s)\,ds + \int_0^t e^{A(t-s)}B(X_s)\,dW_s \]

\(\mathbb{P}\)-a.s. for all \(t \in [0, T]\). Using \(B(X_s) \approx B(X_0) + B'(X_0)\Delta X_s\) shows

\[\Delta X_t \approx (e^{At} - I)X_0 + \int_0^t e^{A(t-s)}F(X_0)\,ds + \int_0^t e^{A(t-s)}B(X_0)\,dW_s \]

\[+ \int_0^t e^{A(t-s)}B'(X_0)\Delta X_s\,dW_s \]

Using \(\Delta X_s \approx \int_0^s e^{A(s-u)}B(X_0)\,dW_u\) (first simple Taylor approximation) recursively yields

\[\Delta X_t \approx (e^{At} - I)X_0 + \int_0^t e^{A(t-s)}F(X_0)\,ds + \int_0^t e^{A(t-s)}B(X_0)\,dW_s \]

\[+ \int_0^t e^{A(t-s)}B'(X_0) \left(\int_0^s e^{A(s-u)}B(X_0)\,dW_u \right) dW_s \]
Using $\Delta X_s \approx \int_0^s e^{A(s-u)} B(X_0) \, dW_u$ (first simple Taylor approximation) recursively yields

$$
\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \\
+ \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s, \\
i.e.
$$

$$
X_t \approx e^{At} X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \\
+ \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s
$$

Infinite dimensional analog of Milstein’s approximation (see the next section of this talk)
Using $\Delta X_s \approx \int_0^s e^{A(s-u)} B(X_0) \, dW_u$ (first simple Taylor approximation) recursively yields

$$
\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \\
+ \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s,
$$

i.e.

$$
X_t \approx e^{At} X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \\
+ \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s,
$$

Infinite dimensional analog of Milstein’s approximation (see the next section of this talk)
Using $\Delta X_s \approx \int_0^s e^{A(s-u)}B(X_0)\,dW_u$ (first simple Taylor approximation) recursively yields

$$
\Delta X_t \approx (e^{At} - I)X_0 + \int_0^t e^{A(t-s)}F(X_0)\,ds + \int_0^t e^{A(t-s)}B(X_0)\,dW_s
$$

$$
+ \int_0^t e^{A(t-s)}B'(X_0) \left(\int_0^s e^{A(s-u)}B(X_0)\,dW_u \right)\,dW_s,
$$
i.e.

$$
X_t \approx e^{At}X_0 + \int_0^t e^{A(t-s)}F(X_0)\,ds + \int_0^t e^{A(t-s)}B(X_0)\,dW_s
$$

$$
+ \int_0^t e^{A(t-s)}B'(X_0) \left(\int_0^s e^{A(s-u)}B(X_0)\,dW_u \right)\,dW_s.
$$

Infinite dimensional analog of Milstein’s approximation (see the next section of this talk)
Using $\Delta X_s \approx \int_0^s e^{A(s-u)} B(X_0) \, dW_u$ (first simple Taylor approximation) recursively yields

$$
\Delta X_t \approx (e^{At} - I) X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \\
+ \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s, \quad \text{i.e.}
$$

$$
X_t \approx e^{At} X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \\
+ \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s
$$

Infinite dimensional analog of Milstein’s approximation (see the next section of this talk)
Iterating this idea yields more Taylor approximations such as

\[
X_t \approx e^{At}X_0 + \int_0^t e^{A(t-s)}F(X_0) \, ds + \int_0^t e^{A(t-s)}B(X_0) \, dW_s \\
+ \int_0^t e^{A(t-s)}B'(X_0) \left(e^{As} - I \right) X_0 \, dW_s \\
+ \int_0^t e^{A(t-s)}B'(X_0) \left(\int_0^s e^{A(s-u)}B(X_0) \, dW_u \right) \, dW_s \\
+ \frac{1}{2} \int_0^t e^{A(t-s)}B''(X_0) \left(\int_0^s e^{A(s-u)}B(X_0) \, dW_u, \int_0^s e^{A(s-u)}B(X_0) \, dW_u \right) \, dW_s
\]
Some remarks:

- **References:**
 - “Taylor expansions of solutions of stochastic partial differential equations” (J; DCDS B 2010)

- Systematic theory with appropriate integral operators

- Precisely description of the remainder terms & arbitrarily high orders

- Essential constituents: \[\int_{0}^{t} e^{A(t-s)} B'(X_0) \left(\int_{0}^{s} e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s \]

- Method: classical Taylor expansions in Banach spaces & recursion technique

- These Taylor Expansions for SPDEs generalize the Taylor Expansions for ODEs and SODEs.
Some remarks:

- **References:**
 - “Taylor expansions of solutions of stochastic partial differential equations” (J; DCDS B 2010)

- Systematic theory with appropriate integral operators
- Precisely description of the remainder terms & arbitrarily high orders
- Essential constituents: \(\int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s \)
- Method: classical Taylor expansions in Banach spaces & recursion technique
- These Taylor Expansions for SPDEs generalize the Taylor Expansions for ODEs and SODEs.
Some remarks:

- References:
 - “Taylor expansions of solutions of stochastic partial differential equations” (J; DCDS B 2010)

- Systematic theory with appropriate integral operators
 - Precisely description of the remainder terms & arbitrarily high orders
 - Essential constituents: \[\int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s \]
 - Method: classical Taylor expansions in Banach spaces & recursion technique
 - These Taylor Expansions for SPDEs generalize the Taylor Expansions for ODEs and SODEs.
Some remarks:

- **References:**
 - “Taylor expansions of solutions of stochastic partial differential equations” (J; DCDS B 2010)
- **Systematic theory with appropriate integral operators**
- **Precisely description of the remainder terms & arbitrarily high orders**
 - Essential constituents: \(\int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \ dW_u \right) \ dW_s \)
 - Method: classical Taylor expansions in Banach spaces & recursion technique
 - These Taylor Expansions for SPDEs generalize the Taylor Expansions for ODEs and SODEs.
Some remarks:

- References:
 - “Taylor expansions of solutions of stochastic partial differential equations” (J; DCDS B 2010)

- Systematic theory with appropriate integral operators

- Precisely description of the remainder terms & arbitrarily high orders

- Essential constituents: \(\int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s \)

- Method: classical Taylor expansions in Banach spaces & recursion technique

- These Taylor Expansions for SPDEs generalize the Taylor Expansions for ODEs and SODEs.
Some remarks:

- References:
 - “Taylor expansions of solutions of stochastic partial differential equations” (J; DCDS B 2010)

- Systematic theory with appropriate integral operators
- Precisely description of the remainder terms & arbitrarily high orders
- Essential constituents: \[\int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s \]
- Method: classical Taylor expansions in Banach spaces & recursion technique

- These Taylor Expansions for SPDEs generalize the Taylor Expansions for ODEs and SODEs.
Some remarks:

- References:
 - “Taylor expansions of solutions of stochastic partial differential equations” (J; DCDS B 2010)

- Systematic theory with appropriate integral operators

- Precisely description of the remainder terms & arbitrarily high orders

- Essential constituents: $\int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s$

- Method: classical Taylor expansions in Banach spaces & recursion technique

- These Taylor Expansions for SPDEs generalize the Taylor Expansions for ODEs and SODEs.
Content

1. Taylor expansions for SODEs
2. Taylor expansions for SPDEs
3. A new numerical method for SPDEs with non-additive noise
4. A new numerical method for SPDEs with additive noise
Reconsider the SPDE and the infinite dimensional analog of Milstein’s approximation

Reconsider the SPDE

\[dX_t = \left[AX_t + F(X_t) \right] dt + B(X_t) dW_t, \quad X_0 = \xi \]

for \(t \in [0, T] \). SPDE in the mild form

\[X_t = e^{At}X_0 + \int_0^t e^{A(t-s)}F(X_s) \, ds + \int_0^t e^{A(t-s)}B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Infinite dimensional analog of Milstein’s approximation:

\[X_t \approx e^{At}X_0 + \int_0^t e^{A(t-s)}F(X_0) \, ds + \int_0^t e^{A(t-s)}B(X_0) \, dW_s \]

\[+ \int_0^t e^{A(t-s)}B'(X_0) \left(\int_0^s e^{A(s-u)}B(X_0) \, dW_u \right) \, dW_s \]
Reconsider the SPDE and the infinite dimensional analog of Milstein’s approximation

Reconsider the SPDE

\[dX_t = \left[AX_t + F(X_t) \right] dt + B(X_t) \, dW_t, \quad X_0 = \xi \]

for \(t \in [0, T] \). SPDE in the mild form

\[X_t = e^{At} X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Infinite dimensional analog of Milstein’s approximation:

\[X_t \approx e^{At} X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

\[+ \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s \]
Reconsider the SPDE and the infinite dimensional analog of Milstein’s approximation

Reconsider the SPDE

\[dX_t = \left[AX_t + F(X_t) \right] dt + B(X_t) \, dW_t, \quad X_0 = \xi \]

for \(t \in [0, T] \). SPDE in the mild form

\[X_t = e^{At} X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

\(\mathbb{P} \)-a.s. for all \(t \in [0, T] \). Infinite dimensional analog of Milstein’s approximation:

\[X_t \approx e^{At} X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

\[+ \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s \]
Let $d = 1$ and consider the SPDE

$$dX_t(x) = \left[\kappa \frac{\partial^2}{\partial x^2} X_t(x) + f(x, X_t(x)) \right] dt + b(x, X_t(x)) \, dW_t(x)$$

with $X_t(0) = X_t(1) = 0$ and $X_0(x) = \xi(x)$ for $x \in (0, 1)$ and $t \in [0, T]$ with the covariance operator $Q : H \to H$ given by

$$(Qv)(x) = \sum_{j=1}^{\infty} \frac{2}{j^3} \cos(j\pi x) \int_0^1 \cos(j\pi y) \, v(y) \, dy$$

for all $x \in (0, 1)$ and all $v \in H.$
Let $d = 1$ and consider the SPDE

$$dX_t(x) = \left[\kappa \frac{\partial^2}{\partial x^2} X_t(x) + f(x, X_t(x)) \right] dt + b(x, X_t(x)) \, dW_t(x)$$

with $X_t(0) = X_t(1) = 0$ and $X_0(x) = \xi(x)$ for $x \in (0, 1)$ and $t \in [0, T]$ with the covariance operator $Q : H \to H$ given by

$$(Qv)(x) = \sum_{j=1}^{\infty} \frac{2}{j^3} \cos(j\pi x) \int_0^1 \cos(j\pi y) \, v(y) \, dy$$

for all $x \in (0, 1)$ and all $v \in H$.
Let \(d = 1 \) and consider the SPDE

\[
dX_t(x) = \left[\kappa \frac{\partial^2}{\partial x^2} X_t(x) + f(x, X_t(x)) \right] dt + b(x, X_t(x)) \, dW_t(x)
\]

with \(X_t(0) = X_t(1) = 0 \) and \(X_0(x) = \xi(x) \) for \(x \in (0, 1) \) and \(t \in [0, T] \)

with the covariance operator \(Q : H \to H \) given by

\[
(Qv)(x) = \sum_{j=1}^{\infty} \frac{2}{j^3} \cos(j \pi x) \int_0^1 \cos(j \pi y) \, v(y) \, dy
\]

for all \(x \in (0, 1) \) and all \(v \in H \).
A one-dimensional example SPDE

Let $d = 1$ and consider the SPDE

$$dX_t(x) = \left[\kappa \frac{\partial^2}{\partial x^2} X_t(x) + f(x, X_t(x)) \right] dt + b(x, X_t(x)) \, dW_t(x)$$

with $X_t(0) = X_t(1) = 0$ and $X_0(x) = \xi(x)$ for $x \in (0, 1)$ and $t \in [0, T]$ with the covariance operator $Q : H \to H$ given by

$$(Qv)(x) = \sum_{j=1}^{\infty} \frac{2}{j^3} \cos(j\pi x) \int_{0}^{1} \cos(j\pi y) \, v(y) \, dy$$

for all $x \in (0, 1)$ and all $v \in H$.
Let $d = 1$ and consider the SPDE

$$dX_t(x) = \left[\kappa \frac{\partial^2}{\partial x^2} X_t(x) + f(x, X_t(x))\right] dt + b(x, X_t(x)) dW_t(x)$$

with $X_t(0) = X_t(1) = 0$ and $X_0(x) = \xi(x)$ for $x \in (0, 1)$ and $t \in [0, T]$ with the covariance operator $Q : H \to H$ given by

$$(Qv)(x) = \sum_{j=1}^{\infty} \frac{2}{j^3} \cos(j\pi x) \int_0^1 \cos(j\pi y) v(y) \, dy$$

for all $x \in (0, 1)$ and all $v \in H$.
Goal: Solve the strong approximation problem, i.e. compute \(Y : \Omega \rightarrow H \) such that

\[
\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Y(x) \right|^2 \, dx \right] \right)^{\frac{1}{2}} < \varepsilon
\]

holds for a given precision \(\varepsilon > 0 \) with the least possible computational effort.

Spectral Galerkin approximations: \(P_N : H \rightarrow H, N \in \mathbb{N}, \) given by

\[
(P_N(v))(x) = \sum_{n=1}^N 2 \sin(n\pi x) \int_0^1 \sin(n\pi y) v(y) \, dy
\]

for all \(x \in (0, 1), v \in H \) and all \(N \in \mathbb{N} \).
Goal: Solve the strong approximation problem, i.e. compute $Y : \Omega \rightarrow H$ such that

$$
\left(\mathbb{E} \left[\int_0^1 |X_T(x) - Y(x)|^2 \, dx \right] \right)^{\frac{1}{2}} < \varepsilon
$$

holds for a given precision $\varepsilon > 0$ with the least possible computational effort.

Spectral Galerkin approximations: $P_N : H \rightarrow H$, $N \in \mathbb{N}$, given by

$$(P_N(v))(x) = \sum_{n=1}^N 2 \sin(n\pi x) \int_0^1 \sin(n\pi y) \, v(y) \, dy$$

for all $x \in (0, 1)$, $v \in H$ and all $N \in \mathbb{N}$.
Goal: Solve the **strong approximation problem**, i.e. compute $Y : \Omega \rightarrow H$ such that

$$
\left(\mathbb{E} \left[\int_0^1 |X_T(x) - Y(x)|^2 \, dx \right] \right)^{1/2} < \varepsilon
$$

holds for a given precision $\varepsilon > 0$ with the least possible computational effort.

Spectral Galerkin approximations: $P_N : H \rightarrow H$, $N \in \mathbb{N}$, given by

$$
(P_N(v))(x) = \sum_{n=1}^{N} 2 \sin(n \pi x) \int_0^1 \sin(n \pi y) \, v(y) \, dy
$$

for all $x \in (0, 1)$, $v \in H$ and all $N \in \mathbb{N}$.

Goal: Solve the strong approximation problem, i.e. compute $Y : \Omega \rightarrow H$ such that

$$
\left(\mathbb{E} \left[\int_0^1 |X_T(x) - Y(x)|^2 \, dx \right] \right)^{\frac{1}{2}} < \varepsilon
$$

holds for a given precision $\varepsilon > 0$ with the least possible computational effort.

Spectral Galerkin approximations: $P_N : H \rightarrow H$, $N \in \mathbb{N}$, given by

$$(P_N(v))(x) = \sum_{n=1}^{N} 2 \sin(n\pi x) \int_0^1 \sin(n\pi y) \, v(y) \, dy$$

for all $x \in (0, 1)$, $v \in H$ and all $N \in \mathbb{N}$.
Goal: Solve the strong approximation problem, i.e. compute \(Y : \Omega \rightarrow H \) such that
\[
\left(\mathbb{E} \left[\int_0^1 |X_T(x) - Y(x)|^2 \, dx \right] \right)^{\frac{1}{2}} < \varepsilon
\]
holds for a given precision \(\varepsilon > 0 \) with the least possible computational effort.

Spectral Galerkin approximations: \(P_N : H \rightarrow H, N \in \mathbb{N}, \) given by
\[
(P_N(v))(x) = \sum_{n=1}^N 2 \sin(n\pi x) \int_0^1 \sin(n\pi y) \, v(y) \, dy
\]
for all \(x \in (0, 1), \, v \in H \) and all \(N \in \mathbb{N}. \)
Goal: Solve the **strong approximation problem**, i.e. compute $Y : \Omega \rightarrow H$ such that

$$\left(\mathbb{E} \left[\int_0^1 |X_T(x) - Y(x)|^2 \, dx \right] \right)^{\frac{1}{2}} < \varepsilon$$

holds for a given precision $\varepsilon > 0$ with the least possible computational effort.

Spectral Galerkin approximations: $P_N : H \rightarrow H$, $N \in \mathbb{N}$, given by

$$(P_N(v))(x) = \sum_{n=1}^N 2 \sin(n\pi x) \int_0^1 \sin(n\pi y) v(y) \, dy$$

for all $x \in (0, 1)$, $v \in H$ and all $N \in \mathbb{N}$.

Taylor expansions for SODEs

Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise

A new numerical method for SPDEs with additive noise
Goal: Solve the strong approximation problem, i.e. compute $Y : \Omega \rightarrow H$ such that

$$\left(\mathbb{E} \left[\int_0^1 |X_T(x) - Y(x)|^2 \, dx \right] \right)^{\frac{1}{2}} < \varepsilon$$

holds for a given precision $\varepsilon > 0$ with the least possible computational effort.

Spectral Galerkin approximations: $P_N : H \rightarrow H$, $N \in \mathbb{N}$, given by

$$(P_N(v))(x) = \sum_{n=1}^{N} 2 \sin(n\pi x) \int_0^1 \sin(n\pi y) \, v(y) \, dy$$

for all $x \in (0, 1)$, $v \in H$ and all $N \in \mathbb{N}$.
Taylor expansions for SODEs
Taylor expansions for SPDEs
A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Linear implicit Euler scheme and spectral Galerkin approximations

\[Z_N^n : \Omega \rightarrow P_N(H), \; n \in \{0, 1, \ldots, N^4\}, \; N \in \mathbb{N}, \text{ given by } Z_0^N = P_N(\xi) \text{ and} \]

\[Z_{n+1}^N = P_N \left(I - \frac{T}{N^4} A \right)^{-1} \left(Z_n^N + \frac{T}{N^4} \cdot f(\cdot, Z_n^N) + b(\cdot, Z_n^N) \cdot \left(W_{(n+1)T}^{N^4} - W_{nT}^{N^4} \right) \right) \]

for all \(n \in \{0, 1, \ldots, N^4 - 1\}, \; N \in \mathbb{N}. \)

- \(N^4 \) time steps are used in \((Z_n^N)_{n \in \{0,1,\ldots,N^4\}} \)
- \(Z_n^N \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^4\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(\underbrace{N^4}_{\text{time steps}} \cdot \underbrace{N}_{\text{dim}(P_N(H))} = N^5 \) independent standard normal random variables needed to simulate \(Z_{N^4}^N \approx X_T \)
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z^n_N : \Omega \to P_N(H), \ n \in \{0, 1, \ldots, N^4\}, \ N \in \mathbb{N}, \text{ given by } Z^0_N = P_N(\xi) \text{ and } \]

\[Z^{n+1}_N = P_N \left(I - \frac{T}{N^4} A \right)^{-1} \left(Z^n_N + \frac{T}{N^4} \cdot f(\cdot, Z^n_N) + b(\cdot, Z^n_N) \cdot \left(W_{(n+1)T}^N - W_{nT}^N \right) \right) \]

for all \(n \in \{0, 1, \ldots, N^4 - 1\}, \ N \in \mathbb{N}. \)

- \(N^4 \) time steps are used in \((Z^n_N)_{n \in \{0, 1, \ldots, N^4\}} \)
- \(Z^n_N \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^4\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(\left(N^4 \text{ time steps} \right) \cdot \left(N \text{ dim}(P_N(H)) \right) = N^5 \) independent standard normal random variables needed to simulate \(Z^{N^4}_N \approx X_T \)
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z^N_n : \Omega \rightarrow P_N(H), \ n \in \{0, 1, \ldots, N^4\}, \ N \in \mathbb{N}, \text{ given by } Z^N_0 = P_N(\xi) \text{ and} \]

\[Z^N_{n+1} = P_N \left(I - \frac{T}{N^4 A} \right)^{-1} \left(Z^N_n + \frac{T}{N^4} \cdot f(\cdot, Z^N_n) + b(\cdot, Z^N_n) \cdot \left(W^N_{(n+1)T/N^4} - W^N_{nT/N^4} \right) \right) \]

for all \(n \in \{0, 1, \ldots, N^4 - 1\}, \ N \in \mathbb{N}. \)

- \(N^4 \) time steps are used in \((Z^N_n)_{n \in \{0,1,\ldots,N^4\}} \)
- \(Z^N_n \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^4\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(\sqrt{N^4 \cdot \text{time steps}} \cdot \sqrt{\dim(P_N(H))} = N^5 \) independent standard normal random variables needed to simulate \(Z^{N^4}_{N^4} \approx X_T \)
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z_n^N : \Omega \rightarrow P_N(H), \ n \in \{0, 1, \ldots, N^4\}, \ N \in \mathbb{N}, \text{ given by } Z_0^N = P_N(\xi) \text{ and } \]

\[
Z_{n+1}^N = P_N\left(I - \frac{T}{N^4} A\right)^{-1}\left(Z_n^N + \frac{T}{N^4} \cdot f(\cdot, Z_n^N) + b(\cdot, Z_n^N) \cdot \left(W_{(n+1)T}^N - W_{nT}^N\right)\right)
\]

for all \(n \in \{0, 1, \ldots, N^4 - 1\}, \ N \in \mathbb{N}. \)

- \(N^4 \) time steps are used in \((Z_n^N)_{n \in \{0, 1, \ldots, N^4\}}\)
- \(Z_n^N \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^4\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(\underbrace{N^4}_{\text{time steps}} \cdot \underbrace{N}_{\text{dim}(P_N(H))} = N^5 \) independent standard normal random variables needed to simulate \(Z_{N^4}^N \approx X_T \)
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z^N_n : \Omega \rightarrow P_N(H), \quad n \in \{0, 1, \ldots, N^4\}, \quad N \in \mathbb{N}, \text{ given by } Z^N_0 = P_N(\xi) \text{ and } \]

\[Z^N_{n+1} = P_N \left(I - \frac{T}{N^4} A \right)^{-1} \left(Z^N_n + \frac{T}{N^4} \cdot f(\cdot, Z^N_n) + b(\cdot, Z^N_n) \cdot \left(W^N_{(n+1)T} - W^N_{nT} \right) \right) \]

for all \(n \in \{0, 1, \ldots, N^4 - 1\}, \quad N \in \mathbb{N}. \)

- \(N^4 \) time steps are used in \((Z^N_n)_{n \in \{0,1,\ldots,N^4\}}\)
- \(Z^N_n \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^4\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(\underbrace{N^4}_{\text{time steps}} \cdot \underbrace{N}_{\text{dim}(P_N(H))} = N^5 \) independent standard normal random variables needed to simulate \(Z^N_{N^4} \approx X_T \).
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z_n^N : \Omega \rightarrow P_N(H), \ n \in \{0, 1, \ldots, N^4\}, \ N \in \mathbb{N}, \text{ given by } Z_0^N = P_N(\xi) \text{ and} \]

\[Z_{n+1}^N = P_N\left(I - \frac{T}{N^4} A \right)^{-1} \left(Z_n^N + \frac{T}{N^4} \cdot f(\cdot, Z_n^N) + b(\cdot, Z_n^N) \cdot \left(W_{(n+1)T}^N - W_{nT}^N \right) \right) \]

for all \(n \in \{0, 1, \ldots, N^4 - 1\}, \ N \in \mathbb{N} \).

- \(N^4 \) time steps are used in \((Z_n^N)_{n \in \{0,1,\ldots,N^4\}} \)
- \(Z_n^N \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^4\} \) and \(P_N(H) \) is \(N \)-dimensional

\[\underbrace{N^4}_{\text{time steps}} \cdot \underbrace{N}_{\text{dim}(P_N(H))} = N^5 \] independent standard normal random variables needed to simulate \(Z_{N^4}^N \approx X_T \)
A new numerical method for SPDEs with non-additive noise

A new numerical method for SPDEs with additive noise

Taylor expansions for SODEs

Taylor expansions for SPDEs

Z_{N}^{n} : Ω → P_{N}(H), n ∈ \{0, 1, \ldots, N^{4}\}, N ∈ \mathbb{N}, given by Z_{0}^{N} = P_{N}(ξ) and

\[Z_{n+1}^{N} = P_{N}\left(I - \frac{T}{N^{4}A} \right)^{-1} \left(Z_{n}^{N} + \frac{T}{N^{4}} \cdot f(\cdot, Z_{n}^{N}) + b(\cdot, Z_{n}^{N}) \cdot \left(W_{(n+1)T}^{N} - W_{nT}^{N} \right) \right) \]

for all n ∈ \{0, 1, \ldots, N^{4} - 1\}, N ∈ \mathbb{N}.

- \(N^{4}\) time steps are used in \(Z_{n}^{N}\) for \(n \in \{0, 1, \ldots, N^{4}\}\)
- \(Z_{n}^{N} \in P_{N}(H)\) for all \(n \in \{0, 1, \ldots, N^{4}\}\) and \(P_{N}(H)\) is \(N\)-dimensional
- \(\sqrt{\frac{N^{4}}{\text{dim}(P_{N}(H))}} = N^{5}\) independent standard normal random variables needed to simulate \(Z_{N^{4}}^{N} \approx X_{T}\)
Taylor expansions for SODEs

Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise

A new numerical method for SPDEs with additive noise

Linear implicit Euler scheme and spectral Galerkin approximations

\[Z^N_n : \Omega \to P_N(H), \ n \in \{0, 1, \ldots, N^4\}, \ N \in \mathbb{N}, \] given by \(Z^N_0 = P_N(\xi) \) and

\[
Z^N_{n+1} = P_N\left(I - \frac{T}{N^4} A\right)^{-1} \left(Z^N_n + \frac{T}{N^4} \cdot f(\cdot, Z^N_n) + b(\cdot, Z^N_n) \cdot \left(W^N_{n+1} - W^N_{nT}\right)\right)
\]

for all \(n \in \{0, 1, \ldots, N^4 - 1\}, \ N \in \mathbb{N}. \)

- \(N^4 \) time steps are used in \(\left(Z^N_n\right)_{n \in \{0,1,\ldots,N^4\}} \)
- \(Z^N_n \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^4\} \) and \(P_N(H) \) is \(N \)-dimensional
- \[
\underbrace{N^4}_{\text{time steps}} \cdot \underbrace{N}_{\text{dim}(P_N(H))} = N^5 \]
 independent standard normal random variables needed to simulate \(Z^N_{N^4} \approx X_T \)
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z_N^n : \Omega \to P_N(H), \ n \in \{0, 1, \ldots, N^4\}, \ N \in \mathbb{N}, \text{ given by } Z_0^n = P_N(\xi) \text{ and} \]

\[Z_N^{n+1} = P_N \left(I - \frac{T}{N^4} A \right)^{-1} \left(Z_N^n + \frac{T}{N^4} \cdot f(\cdot, Z_N^n) + b(\cdot, Z_N^n) \cdot \left(W_{(n+1)T}^{N^4} - W_{nT}^{N^4} \right) \right) \]

for all \(n \in \{0, 1, \ldots, N^4 - 1\}, \ N \in \mathbb{N}. \)

- \(N^4 \) time steps are used in \((Z_N^n)_{n \in \{0,1,\ldots,N^4\}} \)
- \(Z_N^n \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^4\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(\underbrace{N^4}_{\text{time steps}} \cdot \underbrace{N}_{\text{dim}(P_N(H))} = N^5 \) independent standard normal random variables needed to simulate \(Z_{N^4}^N \approx X_T \)
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z^N_n : \Omega \to P_N(H), \quad n \in \{0, 1, \ldots, N^4\}, \quad N \in \mathbb{N}, \]
given by \(Z^N_0 = P_N(\xi) \) and

\[
Z^N_{n+1} = P_N \left(I - \frac{T}{N^4} A \right)^{-1} \left(Z^N_n + \frac{T}{N^4} \cdot f(\cdot, Z^N_n) + b(\cdot, Z^N_n) \cdot \left(W^N_{(n+1)T} - W^N_{nT} \right) \right)
\]

for all \(n \in \{0, 1, \ldots, N^4 - 1\}, \quad N \in \mathbb{N}. \)

- \(N^4 \) time steps are used in \((Z^N_n)_{n\in\{0,1,\ldots,N^4\}} \)
- \(Z^N_n \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^4\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(N^4 \cdot \dim(P_N(H)) = N^5 \) independent standard normal random variables needed to simulate \(Z^N_{N^4} \approx X_T \)
Theorem (e.g. Hausenblas, 2003)

There exist $C_r > 0$, $r \in (0, 2)$, such that

$$
\left(\mathbb{E} \left[\int_0^1 |X_T(x) - Z_N^N(x)|^2 \, dx \right] \right)^{1/2} \leq C_r \cdot N^{(r-2)}
$$

holds for all $N \in \mathbb{N}$ and all arbitrarily small $r \in (0, 2)$.

- Z_N^N converges to X_T with order 2
- N^5 random variables are needed to simulate Z_N^N
- **Conclusion**: about $O(\varepsilon^{-5/2})$ random variables are needed to achieve the desired precision $\varepsilon > 0$
Taylor expansions for SODEs
Taylor expansions for SPDEs
A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Linear implicit Euler scheme and spectral Galerkin approximations

Theorem (e.g. Hausenblas, 2003)

There exist $C_r > 0$, $r \in (0, 2)$, such that

$$
\left(E \left[\int_0^1 \left| X_T(x) - Z_{N^4}^N(x) \right|^2 dx \right] \right)^{\frac{1}{2}} \leq C_r \cdot N^{(r-2)}
$$

holds for all $N \in \mathbb{N}$ and all arbitrarily small $r \in (0, 2)$.

- $Z_{N^4}^N$ converges to X_T with order 2—
- N^5 random variables are needed to simulate $Z_{N^4}^N$
- **Conclusion:** about $O(\varepsilon^{-\frac{5}{2}})$ random variables are needed to achieve the desired precision $\varepsilon > 0$
Theorem (e.g. Hausenblas, 2003)

There exist $C_r > 0$, $r \in (0, 2)$, such that

$$
\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Z_{N^4}^N(x) \right|^2 \, dx \right] \right)^{\frac{1}{2}} \leq C_r \cdot N^{(r-2)}
$$

holds for all $N \in \mathbb{N}$ and all arbitrarily small $r \in (0, 2)$.

- $Z_{N^4}^N$ converges to X_T with order 2—
- N^5 random variables are needed to simulate $Z_{N^4}^N$
- **Conclusion:** about $O(\varepsilon^{-\frac{5}{2}})$ random variables are needed to achieve the desired precision $\varepsilon > 0$
Theorem (e.g. Hausenblas, 2003)

There exist $C_r > 0$, $r \in (0, 2)$, such that

$$
\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Z_{N^4}^N(x) \right|^2 \, dx \right] \right)^{\frac{1}{2}} \leq C_r \cdot N^{(r-2)}
$$

holds for all $N \in \mathbb{N}$ and all arbitrarily small $r \in (0, 2)$.

- $Z_{N^4}^N$ converges to X_T with order $2-$
- N^5 random variables are needed to simulate $Z_{N^4}^N$
- **Conclusion**: about $O(\varepsilon^{-\frac{5}{2}})$ random variables are needed to achieve the desired precision $\varepsilon > 0$
Taylor expansions for SODEs

Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise

A new numerical method for SPDEs with additive noise

Linear implicit Euler scheme and spectral Galerkin approximations

Theorem (e.g. Hausenblas, 2003)

There exist $C_r > 0$, $r \in (0, 2)$, such that

$$
\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Z_{N^4}^N(x) \right|^2 \, dx \right] \right)^{\frac{1}{2}} \leq C_r \cdot N^{(r-2)}
$$

holds for all $N \in \mathbb{N}$ and all arbitrarily small $r \in (0, 2)$.

- $Z_{N^4}^N$ converges to X_T with order 2
- N^5 random variables are needed to simulate $Z_{N^4}^N$

Conclusion: about $O(\varepsilon^{-\frac{5}{2}})$ random variables are needed to achieve the desired precision $\varepsilon > 0$
A new numerical method for SPDEs with non-additive noise

A new numerical method for SPDEs with additive noise

Linear implicit Euler scheme and spectral Galerkin approximations

Theorem (e.g. Hausenblas, 2003)

There exist $C_r > 0$, $r \in (0, 2)$, such that

$$
\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Z_{N^4}^N(x) \right|^2 \, dx \right] \right)^{\frac{1}{2}} \leq C_r \cdot N^{(r-2)}
$$

holds for all $N \in \mathbb{N}$ and all arbitrarily small $r \in (0, 2)$.

- $Z_{N^4}^N$ converges to X_T with order 2—
- N^5 random variables are needed to simulate $Z_{N^4}^N$
- **Conclusion:** about $O(\varepsilon^{-\frac{5}{2}})$ random variables are needed to achieve the desired precision $\varepsilon > 0$
Approximating the semigroup yields

\[X_t \approx e^{At} \left(X_0 + t \cdot F(X_0) + \int_0^t B(X_0) \, dW_s \right) + \int_0^t B'(X_0) \left(\int_0^s B(X_0) \, dW_u \right) \, dW_s \]
A new algorithm for SPDEs with non-additive noise

Reconsider the infinite dimensional analog of Milstein’s approximation

\[X_t \approx e^{At} X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

\[+ \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s \]

Approximating the semigroup yields

\[X_t \approx e^{At} \left(X_0 + tF(X_0) + \int_0^t B(X_0) \, dW_s \right) + \int_0^t B'(X_0) \left(\int_0^s B(X_0) \, dW_u \right) \, dW_s \]
A new algorithm for SPDEs with non-additive noise

Reconsider the infinite dimensional analog of Milstein’s approximation

\[X_t \approx e^{At}X_0 + \int_0^t e^{A(t-s)}F(X_0)\,ds + \int_0^t e^{A(t-s)}B(X_0)\,dW_s \]

\[+ \int_0^t e^{A(t-s)}B'(X_0)\left(\int_0^s e^{A(s-u)}B(X_0)\,dW_u\right)\,dW_s \]

Approximating the semigroup yields

\[X_t \approx e^{At}\left(X_0 + t \cdot F(X_0) + \int_0^t B(X_0)\,dW_s + \int_0^t B'(X_0)\left(\int_0^s B(X_0)\,dW_u\right)\,dW_s\right) \]
A new algorithm for SPDEs with non-additive noise

Reconsider the infinite dimensional analog of Milstein’s approximation

\[X_t \approx e^{At} X_0 + \int_0^t e^{A(t-s)} F(X_0) \, ds + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]

\[+ \int_0^t e^{A(t-s)} B'(X_0) \left(\int_0^s e^{A(s-u)} B(X_0) \, dW_u \right) \, dW_s \]

Approximating the semigroup yields

\[X_t \approx e^{At} \left(X_0 + t \cdot F(X_0) + \int_0^t B(X_0) \, dW_s + \int_0^t B'(X_0) \left(\int_0^s B(X_0) \, dW_u \right) \, dW_s \right) \]
Approximating the semigroup yields

\[X_t \approx e^{At} \left(X_0 + t \cdot F(X_0) + \int_0^t B(X_0) \, dW_s + \int_0^t B'(X_0) \left(\int_0^s B(X_0) \, dW_u \right) \, dW_s \right) \]

This indicates the numerical method \(Y^N_n : \Omega \rightarrow P_N(H), \)
\(n \in \{0, 1, \ldots, N^2\}, N \in \mathbb{N}, \) given by \(Y^N_0 = \xi \) and

\[Y^N_{n+1} = P_N e^{A \frac{T}{N^2}} \left(Y^N_n + \frac{T}{N^2} \cdot F(Y^N_n) + B(Y^N_n) \left(\frac{W^N_{(n+1)T}}{N^2} - \frac{W^N_{nT}}{N^2} \right) \right. \]

\[+ \int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} B'(Y^N_n) \left(\int_{\frac{nT}{N^2}}^{s} B(Y^N_n) \, dW^N_u \right) \, dW^N_s \]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\}, N \in \mathbb{N}. \)
Approximating the semigroup yields

\[X_t \approx e^{A t} \left(X_0 + t \cdot F(X_0) + \int_0^t B(X_0) \, dW_s + \int_0^t B'(X_0) \left(\int_0^s B(X_0) \, dW_u \right) \, dW_s \right) \]

This indicates the numerical method \(Y_N^n : \Omega \rightarrow P_N(H) \), \(n \in \{0, 1, \ldots, N^2\}, N \in \mathbb{N} \), given by \(Y_N^0 = \xi \) and

\[
Y_N^{n+1} = P_N e^{A \frac{T}{N^2}} \left(Y_N^n + \frac{T}{N^2} \cdot F(Y_N^n) + B(Y_N^n) \left(\frac{W_N^{(n+1)T} - W_N^{nT}}{N^2} \right) \right. \\
+ \int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} B'(Y_N^n) \left(\int_{\frac{nT}{N^2}}^{s} B(Y_N^n) \, dW_u^N \right) \, dW_s^N \bigg)
\]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\}, N \in \mathbb{N} \).
Approximating the semigroup yields

\[X_t \approx e^{At} \left(X_0 + t \cdot F(X_0) + \int_0^t B(X_0) \, dW_s + \int_0^t B'(X_0) \left(\int_0^s B(X_0) \, dW_u \right) \, dW_s \right) \]

This indicates the numerical method \(Y^N_n : \Omega \rightarrow P_N(H) \), \(n \in \{0, 1, \ldots, N^2\} \), \(N \in \mathbb{N} \), given by \(Y^N_0 = \xi \) and

\[
Y^N_{n+1} = P_N e^{A \frac{T}{N^2}} \left(Y^N_n + \frac{T}{N^2} \cdot F(Y^N_n) + B(Y^N_n) \left(\frac{W^N_{(n+1)T}}{N^2} - \frac{W^N_{nT}}{N^2} \right) \right. \\
\left. + \int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} B'(Y^N_n) \left(\int_{\frac{nT}{N^2}}^{s} B(Y^N_n) \, dW^N_u \right) \, dW^N_s \right)
\]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\} \), \(N \in \mathbb{N} \).
Approximating the semigroup yields

\[X_t \approx e^{A t} \left(X_0 + t \cdot F(X_0) + \int_0^t B(X_0) \, dW_s + \int_0^t B'(X_0) \left(\int_0^s B(X_0) \, dW_u \right) \, dW_s \right) \]

This indicates the numerical method \(Y^N_n : \Omega \to P_N(H) \), \(n \in \{0, 1, \ldots, N^2\} \), \(N \in \mathbb{N} \), given by \(Y^N_0 = \xi \) and

\[
Y^N_{n+1} = P_N e^{A \frac{T}{N^2}} \left(Y^N_n + \frac{T}{N^2} \cdot F(Y^N_n) + B(Y^N_n) \left(\frac{W^N_{(n+1)T}}{N^2} - \frac{W^N_{nT}}{N^2} \right) \right) \\
+ \int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} B'(Y^N_n) \left(\int_{\frac{nT}{N^2}}^s B(Y^N_n) \, dW^N_u \right) \, dW^N_s
\]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\} \), \(N \in \mathbb{N} \).
\(Y^N_n : \Omega \rightarrow P_N(H), \ n \in \{0, 1, \ldots, N^2\}, \ N \in \mathbb{N}, \) given by \(Y^N_0 = P_N(\xi) \) and

\[
Y^N_{n+1} = P_N e^{A^T N^2} \left(Y^N_n + \frac{T}{N^2} \cdot F(Y^N_n) + B(Y^N_n) \left(W^N_{(n+1) T} - W^N_{n T} \right) \right) \\
+ \int_{\frac{n T}{N^2}}^{\frac{(n+1) T}{N^2}} B'(Y^N_n) \left(\int_{\frac{n T}{N^2}}^s B(Y^N_n) \ dW^N_u \right) \ dW^N_s
\]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\}, \ N \in \mathbb{N}. \) A key observation is

\[
\int_{\frac{n T}{N^2}}^{\frac{(n+1) T}{N^2}} B'(Y^N_n) \left(\int_{\frac{n T}{N^2}}^s B(Y^N_n) \ dW^N_u \right) \ dW^N_s \\
= \frac{1}{2} \left(\frac{\partial}{\partial y} b \right)(\cdot, Y^N_n) \cdot b(\cdot, Y^N_n) \cdot \left(\left(W^N_{(n+1) T} - W^N_{n T} \right)^2 - \frac{T}{N^2} \sum_{j=1}^N \mu_j(g_j)^2 \right)
\]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\}, \ N \in \mathbb{N} \) where \((\mu_j)_{j \in \mathbb{N}} \) and \((g_j)_{j \in \mathbb{N}} \) are the eigenvalues and eigenfunctions of \(Q \) respectively.
\[Y^N_n : \Omega \rightarrow P_N(H), \quad n \in \{0, 1, \ldots, N^2\}, \quad N \in \mathbb{N}, \text{ given by } Y^N_0 = P_N(\xi) \text{ and } \]

\[Y^N_{n+1} = P_N e^{A^2 N^2 T} \left(Y^N_n + \frac{T}{N^2} \cdot F(Y^N_n) + B(Y^N_n) \left(W^N_{(n+1)} - W^N_{nT} \right) \right. \\
+ \left. \int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} B'(Y^N_n) \left(\int_{\frac{nT}{N^2}}^{s} B(Y^N_n) \, dW^N_u \right) \, dW^N_s \right) \]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\}, N \in \mathbb{N} \). A key observation is

\[\int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} B'(Y^N_n) \left(\int_{\frac{nT}{N^2}}^{s} B(Y^N_n) \, dW^N_u \right) \, dW^N_s \]

\[= \frac{1}{2} \left(\frac{\partial}{\partial y} b \right)(\cdot, Y^N_n) \cdot b(\cdot, Y^N_n) \cdot \left(\left(W^N_{(n+1)} - W^N_{nT} \right) \right)^2 - \frac{T}{N^2} \sum_{j=1}^{N} \mu_j(g_j)^2 \]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\}, N \in \mathbb{N} \) where \((\mu_j)_{j \in \mathbb{N}}\) and \((g_j)_{j \in \mathbb{N}}\) are the eigenvalues and eigenfunctions of \(Q \) respectively.
Taylor expansions for SODEs

Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise

A new numerical method for SPDEs with additive noise

\[Y^N_n : \Omega \rightarrow P_N(H), \; n \in \{0, 1, \ldots, N^2\}, \; N \in \mathbb{N}, \text{ given by } Y^N_0 = P_N(\xi) \text{ and} \]

\[
Y^N_{n+1} = P_N e^{A^{\frac{T}{N^2}}} \left(Y^N_n + \frac{T}{N^2} \cdot F(Y^N_n) + B(Y^N_n) \left(W^N_{(n+1)\frac{T}{N^2}} - W^N_{n\frac{T}{N^2}} \right) \right)

+ \int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} B'(Y^N_n) \left(\int_{\frac{nT}{N^2}}^{s} B(Y^N_n) \, dW^N_u \right) \, dW^N_s
\]

\[P\text{-a.s. for all } n \in \{0, 1, \ldots, N^2 - 1\}, \; N \in \mathbb{N}. \text{ A key observation is} \]

\[
\int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} B'(Y^N_n) \left(\int_{\frac{nT}{N^2}}^{s} B(Y^N_n) \, dW^N_u \right) \, dW^N_s

= \frac{1}{2} \left(\frac{\partial}{\partial y} b \right)(\cdot, Y^N_n) \cdot b(\cdot, Y^N_n) \cdot \left(\left(W^N_{(n+1)\frac{T}{N^2}} - W^N_{n\frac{T}{N^2}} \right)^2 - \frac{T}{N^2} \sum_{j=1}^{N} \mu_j(g_j)^2 \right)
\]

\[P\text{-a.s. for all } n \in \{0, 1, \ldots, N^2 - 1\}, \; N \in \mathbb{N} \text{ where } (\mu_j)_{j \in \mathbb{N}} \text{ and } (g_j)_{j \in \mathbb{N}} \text{ are the eigenvalues and eigenfunctions of } Q \text{ respectively.} \]
$Y_N^n : \Omega \rightarrow P_N(H)$, $n \in \{0, 1, \ldots, N^2\}$, $N \in \mathbb{N}$, given by $Y_N^0 = P_N(\xi)$ and

\[
Y_N^{n+1} = P_N e^{A_T N^{-2}} \left(Y_N^n + \frac{T}{N^2} \cdot f(\cdot, Y_N^n) + b(\cdot, Y_N^n) \cdot \left(\frac{W_{(n+1)T}^N}{N^2} - \frac{W_{nT}^N}{N^2} \right) \right)
\]

$$
+ \frac{1}{2} \left(\frac{\partial}{\partial y} b \right)(\cdot, Y_N^n) \cdot b(\cdot, Y_N^n) \cdot \left(\left(\frac{W_{(n+1)T}^N}{N^2} - \frac{W_{nT}^N}{N^2} \right)^2 - \frac{T}{N^2} \sum_{j=1}^N \mu_j (g_j)^2 \right)
$$

\mathbb{P}-a.s. for all $n \in \{0, 1, \ldots, N^2 - 1\}$, $N \in \mathbb{N}$. A key observation is

\[
\int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} B'(Y_N^n) \left(\int_{\frac{nT}{N^2}}^{s} B(Y_N^n) \, dW^N_u \right) \, dW^N_s
\]

$$
= \frac{1}{2} \left(\frac{\partial}{\partial y} b \right)(\cdot, Y_N^n) \cdot b(\cdot, Y_N^n) \cdot \left(\left(\frac{W_{(n+1)T}^N}{N^2} - \frac{W_{nT}^N}{N^2} \right)^2 - \frac{T}{N^2} \sum_{j=1}^N \mu_j (g_j)^2 \right)
$$

\mathbb{P}-a.s. for all $n \in \{0, 1, \ldots, N^2 - 1\}$, $N \in \mathbb{N}$ where $(\mu_j)_{j \in \mathbb{N}}$ and $(g_j)_{j \in \mathbb{N}}$ are the eigenvalues and eigenfunctions of Q respectively.
A new numerical method for SPDEs with non-additive noise

\(Y^N_n : \Omega \to P_N(H), \quad n \in \{0, 1, \ldots, N^2\}, \quad N \in \mathbb{N}, \) given by \(Y^N_0 = P_N(\xi) \) and

\[
Y^N_{n+1} = P_N e^{A \frac{T}{N^2}} Y^N_n + \frac{T}{N^2} \cdot f(\cdot, Y^N_n) + b(\cdot, Y^N_n) \cdot \left(\frac{W_{(n+1)T}}{N^2} - \frac{W_{nT}}{N^2} \right) \\
+ \frac{1}{2} \left(\frac{\partial}{\partial y} b \right)(\cdot, Y^N_n) \cdot b(\cdot, Y^N_n) \cdot \left(\left(\frac{W_{(n+1)T}}{N^2} - \frac{W_{nT}}{N^2} \right)^2 - \frac{T}{N^2} \sum_{i=1}^{N} \mu_i(g_i)^2 \right)
\]

for all \(n \in \{0, 1, \ldots, N^2 - 1\}, \quad N \in \mathbb{N}. \)

- \(N^2 \) time steps are used in \((Y^N_n)_{n \in \{0, 1, \ldots, N^2\}} \)
- \(Y^N_n \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^2\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(\frac{N^2 \text{ time steps}}{\text{dim}(P_N(H))} = N^3 \) independent standard normal random variables needed to simulate \(Y^N_{N^2} \approx X_T \)
\[Y^N_n : \Omega \rightarrow P_N(H), \; n \in \{0, 1, \ldots, N^2\}, \; N \in \mathbb{N}, \text{ given by } Y^N_0 = P_N(\xi) \text{ and} \]

\[Y^N_{n+1} = P_N e^{AT_{N^2}} \left(Y^N_n + \frac{T}{N^2} \cdot f(\cdot, Y^N_n) + b(\cdot, Y^N_n) \cdot \left(\frac{W^{N(n+1)T}_{nT}}{N^2} - \frac{W^N_{nT}}{N^2} \right) \right) + \frac{1}{2} \left(\frac{\partial b}{\partial y} \right)(\cdot, Y^N_n) \cdot b(\cdot, Y^N_n) \cdot \left(\left(\frac{W^{N(n+1)T}_{nT}}{N^2} - \frac{W^N_{nT}}{N^2} \right)^2 - \frac{T}{N^2} \sum_{i=1}^{N} \mu_i(g_i)^2 \right) \]

for all \(n \in \{0, 1, \ldots, N^2 - 1\}, \; N \in \mathbb{N}. \)

- \(N^2 \) time steps are used in \((Y^N_n)_{n \in \{0, 1, \ldots, N^2\}} \)
- \(Y^N_n \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^2\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(\frac{N^2}{\text{time steps}} \cdot \frac{N}{\text{dim}(P_N(H))} = N^3 \) independent standard normal random variables needed to simulate \(Y^N_{N^2} \approx X_T \)
$Y^n_N : \Omega \to P_N(H)$, $n \in \{0, 1, \ldots, N^2\}$, $N \in \mathbb{N}$, given by $Y^0_N = P_N(\xi)$ and

\[
Y^{n+1}_N = P_N e^{At \frac{T}{N^2}} \left(Y_n^N + \frac{T}{N^2} \cdot f(\cdot, Y^N_n) + b(\cdot, Y^N_n) \cdot \left(W_{(n+1)T}^N - W_{nT}^N \frac{T}{N^2} \right) \right) \\
+ \frac{1}{2} \left(\frac{\partial}{\partial y} b \right)(\cdot, Y^N_n) \cdot b(\cdot, Y^N_n) \cdot \left(\left(W_{(n+1)T}^N - W_{nT}^N \frac{T}{N^2} \right)^2 - \frac{T}{N^2} \sum_{i=1}^N \mu_i (g_i)^2 \right)
\]

for all $n \in \{0, 1, \ldots, N^2 - 1\}$, $N \in \mathbb{N}$.

- N^2 time steps are used in $(Y^n_N)_{n \in \{0, 1, \ldots, N^2\}}$
- $Y^n_N \in P_N(H)$ for all $n \in \{0, 1, \ldots, N^2\}$ and $P_N(H)$ is N-dimensional

\[
\underbrace{N^2}_{\text{time steps}} \cdot \underbrace{N}_{\text{dim}(P_N(H))} = N^3 \quad \text{independent standard normal random variables needed to simulate } Y^N_{N^2} \approx X_T
\]
Taylor expansions for SODEs

Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise

A new numerical method for SPDEs with additive noise

\[Y^N_n : \Omega \to P_N(H), \quad n \in \{0, 1, \ldots, N^2\}, \quad N \in \mathbb{N}, \text{ given by } Y^N_0 = P_N(\xi) \text{ and} \]

\[
Y^N_{n+1} = P_N e^{A \frac{T}{N^2}} \left(Y^N_n + \frac{T}{N^2} \cdot f(\cdot, Y^N_n) + b(\cdot, Y^N_n) \cdot \left(\frac{W^N_{(n+1)T}}{N^2} - W^N_{nT} \right) \right) \]

\[+ \frac{1}{2} \left(\frac{\partial}{\partial y} b \right)(\cdot, Y^N_n) \cdot b(\cdot, Y^N_n) \cdot \left(\left(\frac{W^N_{(n+1)T}}{N^2} - W^N_{nT} \right)^2 - \frac{T}{N^2} \sum_{i=1}^{N} \mu_i (g_i)^2 \right) \]

for all \(n \in \{0, 1, \ldots, N^2 - 1\}, \quad N \in \mathbb{N}. \)

- \(N^2 \) time steps are used in \((Y^N_n)_{n\in\{0,1,\ldots,N^2\}} \)
- \(Y^N_n \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^2\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(\sqrt{N^2 \cdot \dim(P_N(H))} = N^3 \) independent standard normal random variables needed to simulate \(Y^N_{N^2} \approx X_T \)
\[Y^N_n : \Omega \rightarrow P_N(H), \ n \in \{0, 1, \ldots, N^2\}, \ N \in \mathbb{N}, \text{ given by } Y^N_0 = P_N(\xi) \text{ and} \]

\[Y^N_{n+1} = P_N e^{A^{T} \frac{T}{N^2}} \left(Y^N_n + \frac{1}{N^2} f(\cdot, Y^N_n) + b(\cdot, Y^N_n) \cdot \left(W_{(n+1)T}^{N} - W_{nT}^{N} \right) \right) \]

\[+ \frac{1}{2} \left(\frac{\partial}{\partial y} b \right)(\cdot, Y^N_n) \cdot b(\cdot, Y^N_n) \cdot \left(\left(W_{(n+1)T}^{N} - W_{nT}^{N} \right) \right)^2 - \frac{T}{N^2} \sum_{i=1}^{N} \mu_i(g_i)^2 \]

for all \(n \in \{0, 1, \ldots, N^2 - 1\}, \ N \in \mathbb{N}. \)

- \(N^2 \) time steps are used in \((Y^N_n)_{n \in \{0, 1, \ldots, N^2\}} \)
- \(Y^N_n \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^2\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(\sqrt{N^2 \cdot \dim(P_N(H))} = \sqrt{N^3} \) independent standard normal random variables needed to simulate \(Y^N_{N^2} \approx X_T \)
\(Y^N_n : \Omega \to P_N(H), \ n \in \{0, 1, \ldots, N^2\}, \ N \in \mathbb{N}, \) given by \(Y^N_0 = P_N(\xi) \) and

\[
Y^N_{n+1} = P_N e^{A_{\frac{T}{N^2}}} \left(Y^N_n + \frac{T}{N^2} \cdot f(\cdot, Y^N_n) + b(\cdot, Y^N_n) \cdot \left(\frac{W^N_{(n+1)T}}{N^2} - \frac{W^N_{nT}}{N^2} \right) - \frac{T}{N^2} \sum_{i=1}^{N} \mu_i (g_i)^2 \right)
\]

for all \(n \in \{0, 1, \ldots, N^2 - 1\}, \ N \in \mathbb{N}. \)

- \(N^2 \) time steps are used in \((Y^N_n)_{n \in \{0, 1, \ldots, N^2\}} \)
- \(Y^N_n \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^2\} \) and \(P_N(H) \) is \(N \)-dimensional
- \[
\underbrace{N^2}_{\text{time steps}} \cdot \underbrace{N}_{\text{dim}(P_N(H))} = N^3
\]

Independent standard normal random variables needed to simulate \(Y^N_{N^2} \approx X_T \)
Taylor expansions for SODEs

Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise

A new numerical method for SPDEs with additive noise

$Y^N_n : \Omega \rightarrow P_N(H)$, $n \in \{0, 1, \ldots, N^2\}$, $N \in \mathbb{N}$, given by $Y^N_0 = P_N(\xi)$ and

$Y^N_{n+1} = P_N e^{A T N^2} \left(Y^N_n + \frac{T}{N^2} \cdot f(\cdot, Y^N_n) + b(\cdot, Y^N_n) \cdot \left(\frac{W^N_{(n+1)T}}{N^2} - \frac{W^N_{nT}}{N^2} \right) \right.$

$+ \frac{1}{2} \left(\frac{\partial}{\partial y} b \right)(\cdot, Y^N_n) \cdot b(\cdot, Y^N_n) \cdot \left(\left(\frac{W^N_{(n+1)T}}{N^2} - \frac{W^N_{nT}}{N^2} \right)^2 - \frac{T}{N^2} \sum_{i=1}^{N} \mu_i(g_i)^2 \right) \bigg) \bigg)$

for all $n \in \{0, 1, \ldots, N^2 - 1\}$, $N \in \mathbb{N}$.

- N^2 time steps are used in $(Y^N_n)_{n \in \{0, 1, \ldots, N^2\}}$
- $Y^N_n \in P_N(H)$ for all $n \in \{0, 1, \ldots, N^2\}$ and $P_N(H)$ is N-dimensional

$N^2 \cdot \frac{N}{\dim(P_N(H))} = N^3$ independent standard normal random variables needed to simulate $Y^N_{N^2} \approx X_T$
Theorem (J & Röckner, 2010)

There exist $C_r > 0$, $r \in (0, 2)$, such that

$$
\left(\mathbb{E} \left[\int_0^1 |X_T(x) - Y_{N^2}^N(x)|^2 \, dx \right] \right)^{1/2} \leq C_r \cdot N^{(r-2)}
$$

holds for all $N \in \mathbb{N}$ and all arbitrarily small $r \in (0, 2)$.

- $Y_{N^2}^N$ converges to X_T with order 2—
- N^3 random variables are needed to simulate $Y_{N^2}^N$

Conclusion: about $O(\varepsilon^{-\frac{3}{2}})$ random variables are needed to achieve the desired precision $\varepsilon > 0$
Theorem (J & Röckner, 2010)

There exist $C_r > 0$, $r \in (0, 2)$, such that

$$\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Y_{N^2}^N(x) \right|^2 \, dx \right] \right)^{\frac{1}{2}} \leq C_r \cdot N^{(r-2)}$$

holds for all $N \in \mathbb{N}$ and all arbitrarily small $r \in (0, 2)$.

- $Y_{N^2}^N$ converges to X_T with order 2—
- N^3 random variables are needed to simulate $Y_{N^2}^N$
- Conclusion: about $O\left(\varepsilon^{-\frac{3}{2}}\right)$ random variables are needed to achieve the desired precision $\varepsilon > 0$
Theorem (J & Röckner, 2010)

There exist $C_r > 0$, $r \in (0, 2)$, such that

\[
\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Y_{N^2}^N(x) \right|^2 \, dx \right] \right)^{1/2} \leq C_r \cdot N^{r-2}
\]

holds for all $N \in \mathbb{N}$ and all arbitrarily small $r \in (0, 2)$.

- $Y_{N^2}^N$ converges to X_T with order $2-$
- N^3 random variables are needed to simulate $Y_{N^2}^N$
- Conclusion: about $O(\varepsilon^{-3/2})$ random variables are needed to achieve the desired precision $\varepsilon > 0$
Theorem (J & Röckner, 2010)

There exist $C_r > 0$, $r \in (0, 2)$, such that

$$
\left(\mathbb{E} \left[\int_0^1 |X_T(x) - Y_{N^2}^N(x)|^2 \, dx \right] \right)^{\frac{1}{2}} \leq C_r \cdot N^{(r-2)}
$$

holds for all $N \in \mathbb{N}$ and all arbitrarily small $r \in (0, 2)$.

- $Y_{N^2}^N$ converges to X_T with order 2—
- N^3 random variables are needed to simulate $Y_{N^2}^N$
- **Conclusion:** about $O\left(\varepsilon^{-\frac{3}{2}}\right)$ random variables are needed to achieve the desired precision $\varepsilon > 0$
Theorem (J & Röckner, 2010)

There exist $C_r > 0$, $r \in (0, 2)$, such that

$$
\left(\mathbb{E} \left[\int_0^1 |X_T(x) - Y_{N^2}^N(x)|^2 \, dx \right] \right)^{\frac{1}{2}} \leq C_r \cdot N^{(r-2)}
$$

holds for all $N \in \mathbb{N}$ and all arbitrarily small $r \in (0, 2)$.

- $Y_{N^2}^N$ converges to X_T with order 2—
- N^3 random variables are needed to simulate $Y_{N^2}^N$

Conclusion: about $O(\varepsilon^{-\frac{3}{2}})$ random variables are needed to achieve the desired precision $\varepsilon > 0$
Theorem (J & Röckner, 2010)

There exist \(C_r > 0, r \in (0, 2) \), such that

\[
\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Y_{N^2}^N(x) \right|^2 \, dx \right] \right)^{\frac{1}{2}} \leq C_r \cdot N^{(r-2)}
\]

holds for all \(N \in \mathbb{N} \) and all arbitrarily small \(r \in (0, 2) \).

- \(Y_{N^2}^N \) converges to \(X_T \) with order 2—
- \(N^3 \) random variables are needed to simulate \(Y_{N^2}^N \)

Conclusion: about \(O(\varepsilon^{-\frac{3}{2}}) \) random variables are needed to achieve the desired precision \(\varepsilon > 0 \).
Numerical example

Consider the SPDE

$$dX_t(x) = \left[\frac{1}{20} \frac{\partial^2}{\partial x^2} X_t(x) + 1 - X_t(x) \right] dt + \frac{X_t(x)}{1 + X_t(x)^2} dW_t(x)$$

with $X_t(0) = X_t(1) = 0$ and $X_0(x) = 0$ for $x \in (0, 1)$ and $t \in [0, T]$ with $T = 1$.

We plot

$$\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Z_{N^4}^N(x) \right|^2 dx \right] \right)^{\frac{1}{2}}$$

and

$$\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Y_{N^2}^N(x) \right|^2 dx \right] \right)^{\frac{1}{2}}$$

for different $N \in \mathbb{N}$.
Numerical example

Consider the SPDE

$$dX_t(x) = \left[\frac{1}{20} \frac{\partial^2}{\partial x^2} X_t(x) + 1 - X_t(x) \right] dt + \frac{X_t(x)}{1 + X_t(x)^2} dW_t(x)$$

with $X_t(0) = X_t(1) = 0$ and $X_0(x) = 0$ for $x \in (0, 1)$ and $t \in [0, T]$ with $T = 1$.

We plot

$$\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Z^N_{N^4}(x) \right|^2 dx \right] \right)^{\frac{1}{2}}$$

and

$$\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Y^N_{N^2}(x) \right|^2 dx \right] \right)^{\frac{1}{2}}$$

for different $N \in \mathbb{N}$.
Numerical example

Consider the SPDE

\[dX_t(x) = \left[\frac{1}{20} \frac{\partial^2}{\partial x^2} X_t(x) + 1 - X_t(x) \right] dt + \frac{X_t(x)}{1 + X_t(x)^2} dW_t(x) \]

with \(X_t(0) = X_t(1) = 0 \) and \(X_0(x) = 0 \) for \(x \in (0, 1) \) and \(t \in [0, T] \) with \(T = 1 \).

We plot

\[\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Z_{N^4}^N(x) \right|^2 dx \right] \right)^{\frac{1}{2}} \]

and

\[\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Y_{N^2}^N(x) \right|^2 dx \right] \right)^{\frac{1}{2}} \]

for different \(N \in \mathbb{N} \).
Numerical example

Consider the SPDE

\[dX_t(x) = \left[\frac{1}{20} \frac{\partial^2}{\partial x^2} X_t(x) + 1 - X_t(x) \right] dt + \frac{X_t(x)}{1 + X_t(x)^2} dW_t(x) \]

with \(X_t(0) = X_t(1) = 0 \) and \(X_0(x) = 0 \) for \(x \in (0, 1) \) and \(t \in [0, T] \) with \(T = 1 \).

We plot

\[\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Z_{N^4}^N(x) \right|^2 \, dx \right] \right)^{\frac{1}{2}} \]

and

\[\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Y_{N^2}^N(x) \right|^2 \, dx \right] \right)^{\frac{1}{2}} \]

for different \(N \in \mathbb{N} \).
Consider the SPDE

\[dX_t(x) = \left[\frac{1}{20} \frac{\partial^2}{\partial x^2} X_t(x) + 1 - X_t(x) \right] dt + \frac{X_t(x)}{1 + X_t(x)^2} dW_t(x) \]

with \(X_t(0) = X_t(1) = 0 \) and \(X_0(x) = 0 \) for \(x \in (0, 1) \) and \(t \in [0, T] \) with \(T = 1 \).

We plot

\[\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Z_{N^4}^N(x) \right|^2 dx \right] \right)^{\frac{1}{2}} \]

and

\[\left(\mathbb{E} \left[\int_0^1 \left| X_T(x) - Y_{N^2}^N(x) \right|^2 dx \right] \right)^{\frac{1}{2}} \]

for different \(N \in \mathbb{N} \).
How is this result related to Müllер-Gronbach and Ritter’s complexity bound?
How is this result related to **Müller-Gronbach and Ritter’s complexity bound**?
Let $d = 2$ and consider the SPDE

$$
\frac{dX_t(x_1, x_2)}{dt} = \left[\frac{1}{50} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right) X_t(x_1, x_2) \right] dt + X_t(x_1, x_2) \, dW_t(x_1, x_2)
$$

with $X_t|_{\partial(0,1)^2} \equiv 0$ and $X_0(x_1, x_2) = 2 \sin(\pi x_1) \sin(\pi x_2)$ for $x_1, x_2 \in (0, 1)$ and $t \in [0, 1]$ with the covariance operator $Q : H \to H$ given by

$$
(Qv)(x_1, x_2) = \sum_{j_1, j_2 = 1}^{\infty} \frac{2 \sin(j_1 \pi x_1) \sin(j_2 \pi x_2)}{(j_1 + j_2)^4} \int_0^1 \int_0^1 \sin(j_1 \pi y_1) \sin(j_2 \pi y_2) \, v(y_1, y_2) \, dy_1 \, dy_2
$$

for all $x_1, x_2 \in (0, 1)$ and all $v \in H$.
Let $d = 2$ and consider the SPDE

$$
\frac{dX_t(x_1, x_2)}{dt} = \left[\frac{1}{50} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right) X_t(x_1, x_2) \right] dt + X_t(x_1, x_2) \, dW_t(x_1, x_2)
$$

with $X_t|_{\partial(0,1)^2} \equiv 0$ and $X_0(x_1, x_2) = 2 \sin(\pi x_1) \sin(\pi x_2)$ for $x_1, x_2 \in (0, 1)$ and $t \in [0, 1]$ with the covariance operator $Q : H \to H$ given by

$$
(Qv)(x_1, x_2) = \sum_{j_1, j_2=1}^{\infty} \frac{2 \sin(j_1 \pi x_1) \sin(j_2 \pi x_2)}{(j_1 + j_2)^4} \int_0^1 \int_0^1 \sin(j_1 \pi y_1) \sin(j_2 \pi y_2) \, v(y_1, y_2) \, dy_1 \, dy_2
$$

for all $x_1, x_2 \in (0, 1)$ and all $v \in H$.

A. Jentzen
Taylor Expansions for SPDEs
Let $d = 2$ and consider the SPDE

$$dX_t(x_1, x_2) = \left[\frac{1}{50} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right) X_t(x_1, x_2) \right] dt + X_t(x_1, x_2) \, dW_t(x_1, x_2)$$

with $X_t|_{\partial(0,1)^2} \equiv 0$ and $X_0(x_1, x_2) = 2 \sin(\pi x_1) \sin(\pi x_2)$ for $x_1, x_2 \in (0, 1)$ and $t \in [0, 1]$ with the covariance operator $Q : H \to H$ given by

$$(Qv)(x_1, x_2) = \sum_{j_1, j_2 = 1}^{\infty} \frac{2 \sin(j_1 \pi x_1) \sin(j_2 \pi x_2)}{(j_1 + j_2)^4} \int_0^1 \int_0^1 \sin(j_1 \pi y_1) \sin(j_2 \pi y_2) \, v(y_1, y_2) \, dy_1 \, dy_2$$

for all $x_1, x_2 \in (0, 1)$ and all $v \in H$.
A two-dimensional stochastic heat equation

Let \(d = 2 \) and consider the SPDE

\[
dX_t(x_1, x_2) = \left[\frac{1}{50} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right) X_t(x_1, x_2) \right] dt + X_t(x_1, x_2) \, dW_t(x_1, x_2)
\]

with \(X_t|_{\partial(0,1)^2} \equiv 0 \) and \(X_0(x_1, x_2) = 2 \sin(\pi x_1) \sin(\pi x_2) \) for \(x_1, x_2 \in (0, 1) \) and \(t \in [0, 1] \) with the covariance operator \(Q : H \to H \) given by

\[
(Qv)(x_1, x_2) = \sum_{j_1, j_2 = 1}^{\infty} \frac{2 \sin(j_1 \pi x_1) \sin(j_2 \pi x_2)}{(j_1 + j_2)^4} \int_0^1 \int_0^1 \sin(j_1 \pi y_1) \sin(j_2 \pi y_2) \, v(y_1, y_2) \, dy_1 \, dy_2
\]

for all \(x_1, x_2 \in (0, 1) \) and all \(v \in H \).
Let $d = 2$ and consider the SPDE

$$dX_t(x_1, x_2) = \left[\frac{1}{50} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right) X_t(x_1, x_2) \right] dt + X_t(x_1, x_2) \, dW_t(x_1, x_2)$$

with $X_t|_{\partial(0,1)^2} \equiv 0$ and $X_0(x_1, x_2) = 2 \sin(\pi x_1) \sin(\pi x_2)$ for $x_1, x_2 \in (0, 1)$ and $t \in [0, 1]$ with the covariance operator $Q : H \to H$ given by

$$(Qv)(x_1, x_2) = \sum_{j_1, j_2 = 1}^{\infty} \frac{2 \sin(j_1 \pi x_1) \sin(j_2 \pi x_2)}{(j_1 + j_2)^4} \int_0^1 \int_0^1 \sin(j_1 \pi y_1) \sin(j_2 \pi y_2) \, v(y_1, y_2) \, dy_1 \, dy_2$$

for all $x_1, x_2 \in (0, 1)$ and all $v \in H$.
Let $d = 2$ and consider the SPDE
\[
dX_t(x_1, x_2) = \left[\frac{1}{50} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right) X_t(x_1, x_2) \right] dt + X_t(x_1, x_2) \, dW_t(x_1, x_2)
\]
with $X_t|_{\partial(0,1)^2} \equiv 0$ and $X_0(x_1, x_2) = 2 \sin(\pi x_1) \sin(\pi x_2)$ for $x_1, x_2 \in (0,1)$ and $t \in [0,1]$ with the covariance operator $Q : H \to H$ given by
\[
(Qv)(x_1, x_2) = \sum_{j_1, j_2 = 1}^{\infty} \frac{2 \sin(j_1 \pi x_1) \sin(j_2 \pi x_2)}{(j_1 + j_2)^4} \int_0^1 \int_0^1 \sin(j_1 \pi y_1) \sin(j_2 \pi y_2) \, v(y_1, y_2) \, dy_1 \, dy_2
\]
for all $x_1, x_2 \in (0,1)$ and all $v \in H$.
1. Taylor expansions for SODEs
2. Taylor expansions for SPDEs
3. A new numerical method for SPDEs with non-additive noise
4. A new numerical method for SPDEs with additive noise
Reconsider the SPDE and the Exponential Euler approximation

Reconsider the SPDE

\[dX_t = \left[AX_t + F(X_t) \right] dt + B(X_t) dW_t, \quad X_0 = \xi \]

for \(t \in [0, T] \). SPDE in the mild form

\[X_t = e^{At}X_0 + \int_0^t e^{A(t-s)}F(X_s) \, ds + \int_0^t e^{A(t-s)}B(X_s) \, dW_s \]

for all \(t \in [0, T] \). Exponential Euler approximation:

\[X_t \approx e^{At}X_0 + A^{-1}(e^{At} - I)F(X_0) + \int_0^t e^{A(t-s)}B(X_0) \, dW_s \]
Reconsider the SPDE and the Exponential Euler approximation

Reconsider the SPDE

\[dX_t = \left[AX_t + F(X_t) \right] dt + B(X_t) \, dW_t, \quad X_0 = \xi \]

for \(t \in [0, T] \). SPDE in the mild form

\[X_t = e^{At} X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

for all \(t \in [0, T] \). Exponential Euler approximation:

\[X_t \approx e^{At} X_0 + A^{-1} \left(e^{At} - I \right) F(X_0) + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]
Reconsider the SPDE and the Exponential Euler approximation

Reconsider the SPDE

\[dX_t = \left[AX_t + F(X_t) \right] dt + B(X_t) \, dW_t, \quad X_0 = \xi \]

for \(t \in [0, T] \). SPDE in the mild form

\[X_t = e^{At} X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

for all \(t \in [0, T] \). Exponential Euler approximation:

\[X_t \approx e^{At} X_0 + A^{-1} (e^{At} - I) F(X_0) + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]
Reconsider the SPDE and the Exponential Euler approximation

Reconsider the SPDE

\[dX_t = \left[AX_t + F(X_t) \right] dt + B(X_t) dW_t, \quad X_0 = \xi \]

for \(t \in [0, T] \). SPDE in the mild form

\[X_t = e^{At} X_0 + \int_0^t e^{A(t-s)} F(X_s) \, ds + \int_0^t e^{A(t-s)} B(X_s) \, dW_s \]

for all \(t \in [0, T] \). Exponential Euler approximation:

\[X_t \approx e^{At} X_0 + A^{-1} \left(e^{At} - I \right) F(X_0) + \int_0^t e^{A(t-s)} B(X_0) \, dW_s \]
A stochastic Ginzburg-Landau PDE with additive space-time white noise

Consider the SPDE

\[dX_t(x) = \left[\Delta X_t(x) + X_t(x) - X_t(x)^3 \right] dt + dW_t(x) \]

with \(X_t(0) = X_t(1) = 0 \) and \(X_0 = 0 \) for \(x \in (0, 1) \) and \(t \in [0, T] \) on \(H = L^2((0, 1), \mathbb{R}) \) with \(T = 1 \) and where \((W_t)_{t \in [0, T]} \) is a cylindrical \(l \)-Wiener process on \(H \) here.

Goal: Compute

\[X_T(\omega, x), \quad x \in [0, 1], \]

with the precision of two decimals, i.e. with the precision \(\varepsilon = \frac{1}{100} \), for one random \(\omega \in \Omega \).
Consider the SPDE
\[dX_t(x) = \left[\Delta X_t(x) + X_t(x) - X_t(x)^3 \right] dt + dW_t(x) \]
with \(X_t(0) = X_t(1) = 0 \) and \(X_0 = 0 \) for \(x \in (0, 1) \) and \(t \in [0, T] \) on \(H = L^2((0, 1), \mathbb{R}) \) with \(T = 1 \) and where \((W_t)_{t \in [0, T]} \) is a cylindrical \(I \)-Wiener process on \(H \) here.

Goal: Compute
\[X_T(\omega, x), \quad x \in [0, 1], \]
with the precision of two decimals, i.e. with the precision \(\varepsilon = \frac{1}{100} \), for one random \(\omega \in \Omega \).
A stochastic Ginzburg-Landau PDE with additive space-time white noise

Consider the SPDE

\[dX_t(x) = \left[\Delta X_t(x) + X_t(x) - X_t(x)^3 \right] dt + dW_t(x) \]

with \(X_t(0) = X_t(1) = 0 \) and \(X_0 = 0 \) for \(x \in (0, 1) \) and \(t \in [0, T] \) on \(H = L^2((0, 1), \mathbb{R}) \) with \(T = 1 \) and where \((W_t)_{t \in [0, T]} \) is a cylindrical \(\mathcal{L} \)-Wiener process on \(H \) here.

Goal: Compute

\[X_T(\omega, x), \quad x \in [0, 1], \]

with the precision of two decimals, i.e. with the precision \(\varepsilon = \frac{1}{100} \), for one random \(\omega \in \Omega \).
A stochastic Ginzburg-Landau PDE with additive space-time white noise

Consider the SPDE

\[dX_t(x) = \left[\Delta X_t(x) + X_t(x) - X_t(x)^3 \right] dt + dW_t(x) \]

with \(X_t(0) = X_t(1) = 0 \) and \(X_0 = 0 \) for \(x \in (0, 1) \) and \(t \in [0, T] \) on \(H = L^2((0, 1), \mathbb{R}) \) with \(T = 1 \) and where \((W_t)_{t\in[0,T]}\) is a cylindrical \(l\)-Wiener process on \(H \) here.

Goal: Compute

\[X_T(\omega, x), \quad x \in [0, 1], \]

with the precision of two decimals, i.e. with the precision \(\varepsilon = \frac{1}{100} \), for one random \(\omega \in \Omega \).
Consider the SPDE

\[dX_t(x) = \left[\Delta X_t(x) + X_t(x) - X_t(x)^3 \right] dt + dW_t(x) \]

with \(X_t(0) = X_t(1) = 0 \) and \(X_0 = 0 \) for \(x \in (0, 1) \) and \(t \in [0, T] \) on \(H = L^2((0, 1), \mathbb{R}) \) with \(T = 1 \) and where \((W_t)_{t \in [0, T]} \) is a cylindrical \(\mathcal{I} \)-Wiener process on \(H \) here.

Goal: Compute

\[X_T(\omega, x), \quad x \in [0, 1], \]

with the precision of two decimals, i.e. with the precision \(\varepsilon = \frac{1}{100} \), for one random \(\omega \in \Omega \).
Consider the SPDE

\[dX_t(x) = \left[\Delta X_t(x) + X_t(x) - X_t(x)^3 \right] dt + dW_t(x) \]

with \(X_t(0) = X_t(1) = 0 \) and \(X_0 = 0 \) for \(x \in (0, 1) \) and \(t \in [0, T] \) on \(H = L^2((0, 1), \mathbb{R}) \) with \(T = 1 \) and where \((W_t)_{t \in [0, T]} \) is a cylindrical \(I \)-Wiener process on \(H \) here.

Goal: Compute

\[X_T(\omega, x), \quad x \in [0, 1], \]

with the precision of two decimals, i.e. with the precision \(\varepsilon = \frac{1}{100} \), for one random \(\omega \in \Omega \).
Consider the SPDE

\[dX_t(x) = \left[\Delta X_t(x) + X_t(x) - X_t(x)^3 \right] dt + dW_t(x) \]

with \(X_t(0) = X_t(1) = 0 \) and \(X_0 = 0 \) for \(x \in (0, 1) \) and \(t \in [0, T] \) on \(H = L^2((0, 1), \mathbb{R}) \) with \(T = 1 \) and where \((W_t)_{t \in [0, T]} \) is a cylindrical \(\mathcal{L} \)-Wiener process on \(H \) here.

Goal: Compute

\[X_T(\omega, x), \quad x \in [0, 1], \]

with the precision of two decimals, i.e. with the precision \(\varepsilon = \frac{1}{100} \), for one random \(\omega \in \Omega \).
Consider the SPDE

$$dX_t(x) = \left[\Delta X_t(x) + X_t(x) - X_t(x)^3 \right] dt + dW_t(x)$$

with $X_t(0) = X_t(1) = 0$ and $X_0 = 0$ for $x \in (0, 1)$ and $t \in [0, T]$ on $H = L^2((0, 1), \mathbb{R})$ with $T = 1$ and where $(W_t)_{t \in [0, T]}$ is a cylindrical I-Wiener process on H here.

Goal: Compute

$$X_T(\omega, x), \quad x \in [0, 1],$$

with the precision of two decimals, i.e. with the precision $\varepsilon = \frac{1}{100}$, for one random $\omega \in \Omega$.

A stochastic Ginzburg-Landau PDE with additive space-time white noise
Taylor expansions for SODEs
Taylor expansions for SPDEs
A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Linear implicit Euler scheme and spectral Galerkin approximations

\[Z_N^n : \Omega \rightarrow P_N(H), \ n \in \{0, 1, \ldots, N^2\}, \ N \in \mathbb{N}, \text{ given by } Z_0^N = 0 \text{ and } \]

\[Z_N^{n+1} = \left(I - \frac{T}{N^2} A \right)^{-1} \left(Z_N^n + \frac{T}{N^2} \cdot (P_N F)(Z_N^n) + \int_{nT/N^2}^{(n+1)T/N^2} P_N \, dW_s \right) \]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\} \) and all \(N \in \mathbb{N} \).

- \(N^2 \) time steps are used in \((Z_N^n)_{n \in \{0,1,\ldots,N^2\}} \)
- \(Z_N^n \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^2\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(N^2 \) time steps \(\cdot \) \(N \) \(\cdot \) \(\text{dim}(P_N(H)) \) \(= N^3 \) independent standard normal random variables needed to simulate \(Z_{N^2}^N \approx X_T \)
Taylor expansions for SODEs
Taylor expansions for SPDEs
A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Linear implicit Euler scheme and spectral Galerkin approximations

\[Z_n^N : \Omega \rightarrow P_N(H), \ n \in \{0, 1, \ldots, N^2\}, \ N \in \mathbb{N}, \text{ given by } Z_0^N = 0 \text{ and } \]

\[Z_{n+1}^N = \left(I - \frac{T}{N^2} A \right)^{-1} \left(Z_n^N + \frac{T}{N^2} \cdot (P_N F)(Z_n^N) + \int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} P_N \, dW_s \right) \]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\} \) and all \(N \in \mathbb{N} \).

- \(N^2 \) time steps are used in \((Z_n^N)_{n \in \{0, 1, \ldots, N^2\}} \)
- \(Z_n^N \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^2\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(N^2 \) \(\cdot \) \(\frac{N}{\text{dim}(P_N(H))} \) \(= \) \(N^3 \) independent standard normal random variables needed to simulate \(Z_{N^2}^N \approx X_T \)
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z_n^N : \Omega \rightarrow P_N(H), \quad n \in \{0, 1, \ldots, N^2\}, \quad N \in \mathbb{N}, \text{ given by } Z_0^N = 0 \text{ and} \]

\[Z_{n+1}^N = \left(I - \frac{T}{N^2} A \right)^{-1} \left(Z_n^N + \frac{T}{N^2} \cdot (P_N F)(Z_n^N) + \int_{nT/N^2}^{(n+1)T/N^2} P_N \, dW_s \right) \]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\} \) and all \(N \in \mathbb{N} \).

- \(N^2 \) time steps are used in \((Z_n^N)_{n \in \{0, 1, \ldots, N^2\}} \)
- \(Z_n^N \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^2\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(\frac{N^2}{\text{time steps}} \cdot \frac{N}{\text{dim}(P_N(H))} = N^3 \) independent standard normal random variables needed to simulate \(Z_{N^2}^N \approx X_T \)
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z^N_n : \Omega \rightarrow P_N(H), \ n \in \{0, 1, \ldots, N^2\}, \ N \in \mathbb{N}, \ \text{given by} \ Z^N_0 = 0 \text{ and} \]

\[Z^N_{n+1} = \left(I - \frac{T}{N^2} A \right)^{-1} \left(Z^N_n + \frac{T}{N^2} \cdot (P_N F)(Z^N_n) + \int_{nT}^{(n+1)T} \frac{P_N}{N^2} dW_s \right) \]

\(\mathbb{P} \text{-a.s. for all } n \in \{0, 1, \ldots, N^2 - 1\} \text{ and all } N \in \mathbb{N}. \)

- \(N^2\) time steps are used in \((Z^N_n)_{n \in \{0, 1, \ldots, N^2\}}\)
- \(Z^N_n \in P_N(H)\) for all \(n \in \{0, 1, \ldots, N^2\}\) and \(P_N(H)\) is \(N\)-dimensional
- \(\frac{N^2}{\text{time steps}} \cdot \frac{N}{\dim(P_N(H))} = N^3\) independent standard normal random variables needed to simulate \(Z^N_{N^2} \approx X_T\)
Taylor expansions for SODEs
Taylor expansions for SPDEs
A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Linear implicit Euler scheme and spectral Galerkin approximations

\[Z^n_N : \Omega \to P_N(H), \ n \in \{0, 1, \ldots, N^2\}, \ N \in \mathbb{N}, \text{ given by } Z^0_N = 0 \text{ and } \]
\[Z^{n+1}_N = \left(I - \frac{T}{N^2} A \right)^{-1} \left(Z^n_N + \frac{T}{N^2} \cdot (P_N F)(Z^n_N) + \int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} P_N \, dW_s \right) \]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\} \) and all \(N \in \mathbb{N} \).

- \(N^2 \) time steps are used in \((Z^n_N)_{n \in \{0, 1, \ldots, N^2\}} \)
- \(Z^n_N \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^2\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(\frac{N^2}{\text{time steps}} \cdot \frac{N}{\text{dim}(P_N(H))} = N^3 \) independent standard normal random variables needed to simulate \(Z^n_{N^2} \approx X_T \)
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z_n^N : \Omega \rightarrow P_N(H), \quad n \in \{0, 1, \ldots, N^2\}, \ N \in \mathbb{N}, \text{ given by } Z_0^N = 0 \text{ and } \]

\[Z_{n+1}^N = \left(I - \frac{T}{N^2} A \right)^{-1} \left(Z_n^N + \frac{T}{N^2} \cdot (P_N F)(Z_n^N) + \int_{nT/N^2}^{(n+1)T/N^2} P_N \, dW_s \right) \]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\} \) and all \(N \in \mathbb{N} \).

- \(N^2 \) time steps are used in \((Z_n^N)_{n \in \{0, 1, \ldots, N^2\}} \)
- \(Z_n^N \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^2\} \) and \(P_N(H) \) is \(N \)-dimensional

\[\frac{N^2}{\text{time steps}} \cdot \frac{N}{\text{dim}(P_N(H))} = N^3 \]

independent standard normal random variables needed to simulate \(Z_{N^2}^N \approx X_T \)
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z^N_n : \Omega \rightarrow P_N(H), \ n \in \{0, 1, \ldots, N^2\}, \ N \in \mathbb{N}, \] given by \(Z^N_0 = 0 \) and

\[
Z^N_{n+1} = \left(I - \frac{T}{N^2} A \right)^{-1} \left(Z^N_n + \frac{T}{N^2} \cdot (P_N F)(Z^N_n) + \int_{n\frac{T}{N^2}}^{(n+1)\frac{T}{N^2}} P_N \, dW_s \right)
\]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\} \) and all \(N \in \mathbb{N} \).

- \(N^2 \) time steps are used in \((Z^N_n)_{n \in \{0, 1, \ldots, N^2\}} \)
- \(Z^N_n \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^2\} \) and \(P_N(H) \) is \(N \)-dimensional
- \(\sqrt{N^2} \) independent standard normal random variables needed to simulate \(Z^N_{N^2} \approx X_T \)
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z_n^N : \Omega \to P_N(H), \quad n \in \{0, 1, \ldots, N^2\}, \quad N \in \mathbb{N}, \text{ given by } Z_0^N = 0 \text{ and } \]

\[
Z_{n+1}^N = \left(I - \frac{T}{N^2} A \right)^{-1} \left(Z_n^N + \frac{T}{N^2} \cdot (P_N F)(Z_n^N) + \int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} P_N \, dW_s \right)
\]

\[\mathbb{P} \text{-a.s. for all } n \in \{0, 1, \ldots, N^2 - 1\} \text{ and all } N \in \mathbb{N}. \]

\begin{itemize}
 \item \(N^2\) time steps are used in \((Z_n^N)_{n \in \{0, 1, \ldots, N^2\}}\)
 \item \(Z_n^N \in P_N(H)\) for all \(n \in \{0, 1, \ldots, N^2\}\) and \(P_N(H)\) is \(N\)-dimensional
 \item \[
 \underbrace{N^2}_{\text{time steps}} \cdot \underbrace{N}_{\text{dim}(P_N(H))} = N^3
 \]
 independent standard normal random variables needed to simulate \(Z_{N^2}^N \approx X_T\)
\end{itemize}
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z_N^n : \Omega \rightarrow P_N(H), \ n \in \{0, 1, \ldots, N^2\}, \ N \in \mathbb{N}, \text{ given by } Z_N^0 = 0 \text{ and } \]

\[Z_{n+1}^N = \left(I - \frac{T}{N^2} A \right)^{-1} \left(Z_n^N + \frac{T}{N^2} \cdot (P_N F)(Z_n^N) + \int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} P_N \, dW_s \right) \]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\} \) and all \(N \in \mathbb{N} \).

- \(N^2 \) time steps are used in \((Z_n^N)_{n \in \{0, 1, \ldots, N^2\}}\)
- \(Z_n^N \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^2\} \) and \(P_N(H) \) is \(N \)-dimensional

\[\underbrace{N^2}_{\text{time steps}} \cdot \underbrace{N}_{\text{dim}(P_N(H))} = N^3 \]

\(N^2 \) independent standard normal random variables needed to simulate \(Z_{N^2}^N \approx X_T \).
Linear implicit Euler scheme and spectral Galerkin approximations

\[Z^n_N : \Omega \rightarrow P_N(H), \ n \in \{0, 1, \ldots, N^2\}, \ N \in \mathbb{N}, \] given by \(Z^0_N = 0 \) and

\[
Z^{n+1}_N = \left(I - \frac{T}{N^2} A \right)^{-1} \left(Z^n_N + \frac{T}{N^2} \cdot (P_N F)(Z^n_N) + \int_{\frac{nT}{N^2}}^{\frac{(n+1)T}{N^2}} P_N \, dW_s \right)
\]

\(\mathbb{P}\)-a.s. for all \(n \in \{0, 1, \ldots, N^2 - 1\} \) and all \(N \in \mathbb{N} \).

- \(N^2 \) time steps are used in \((Z^n_N)_{n \in \{0, 1, \ldots, N^2\}}\)
- \(Z^n_N \in P_N(H) \) for all \(n \in \{0, 1, \ldots, N^2\} \) and \(P_N(H) \) is \(N \)-dimensional

\[N^2 \cdot \left\lceil \frac{N}{\dim(P_N(H))} \right\rceil = N^3 \] independent standard normal random variables needed to simulate \(Z^N_{N^2} \approx X_T \)
\(Y^N_n : \Omega \rightarrow P_{N^2}(H), \ n \in \{0, 1, \ldots, N\}, \ N \in \mathbb{N}, \) given by \(Y^N_0 = 0 \) and

\[
Y^N_{n+1} = e^{A\frac{T}{N}} Y^N_n + \left(e^{A\frac{T}{N}} - I \right) \cdot (P_{N^2} F)(Y^N_n) + \int_{\frac{nT}{N}}^{\frac{(n+1)T}{N}} P_{N^2} e^{A\left(\frac{(n+1)T}{N} - s\right)} dW_s
\]

\(\mathbb{P}\) a.s. for all \(n \in \{0, 1, \ldots, N - 1\} \) and all \(N \in \mathbb{N}. \)

- \(N \) time steps are used in \((Y^N_n)_{n \in \{0, 1, \ldots, N\}} \)
- \(Y^N_n \in P_{N^2}(H) \) for all \(n \in \{0, 1, \ldots, N\} \) and \(P_{N^2}(H) \) is \(N^2 \)-dimensional
- \[
N \begin{array}{c} \text{time steps} \\ \hline \text{dim}(P_{N^2}(H)) \end{array} = N^3 \quad \text{independent standard normal random variables needed to simulate } Y^N_n \approx X_T
\]
Exponential Euler scheme

\(Y^N_n : \Omega \rightarrow P_{N^2}(H) \), \(n \in \{0, 1, \ldots, N\} \), \(N \in \mathbb{N} \), given by \(Y^N_0 = 0 \) and

\[
Y^N_{n+1} = e^{A_T^N} Y^N_n + \frac{(e^{A_T^N} - I)}{A} \cdot (P_{N^2} F)(Y^N_n) + \int_{nT^N_N}^{(n+1)T^N_N} P_{N^2} e^{A((n+1)T^N_N - s)} dW_s
\]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N - 1\} \) and all \(N \in \mathbb{N} \).

- \(N \) time steps are used in \((Y^N_n)_{n \in \{0, 1, \ldots, N\}}\)
- \(Y^N_n \in P_{N^2}(H) \) for all \(n \in \{0, 1, \ldots, N\} \) and \(P_{N^2}(H) \) is \(N^2 \)-dimensional
- \(\frac{N}{\text{time steps}} \cdot \frac{N^2}{\dim(P_{N^2}(H))} = N^3 \) independent standard normal random variables needed to simulate \(Y^N_N \approx X_T \)
Exponential Euler scheme

\[Y^N_n : \Omega \rightarrow P_{N^2}(H), \quad n \in \{0, 1, \ldots, N\}, \quad N \in \mathbb{N}, \] given by \(Y^N_0 = 0 \) and

\[
Y^N_{n+1} = e^{A_T^N} Y^N_n + \left(e^{A_T^N} - I \right) \frac{1}{A} \cdot (P_{N^2} F)(Y^N_n) + \int_{nT/N}^{(n+1)T/N} P_{N^2} e^{A \left(\frac{(n+1)T}{N} - s \right)} dW_s
\]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N - 1\} \) and all \(N \in \mathbb{N} \).

- \(N \) time steps are used in \((Y^N_n)_{n \in \{0, 1, \ldots, N\}} \)
- \(Y^N_n \in P_{N^2}(H) \) for all \(n \in \{0, 1, \ldots, N\} \) and \(P_{N^2}(H) \) is \(N^2 \)-dimensional
- \[
\frac{N}{\text{time steps}} \cdot \frac{N^2}{\text{dim}(P_{N^2}(H))} = N^3\]
 independent standard normal random variables needed to simulate \(Y^N_N \approx X_T \).
Exponential Euler scheme

\[Y^N_n : \Omega \rightarrow P_{N^2}(H), \; n \in \{0, 1, \ldots, N\}, \; N \in \mathbb{N}, \text{given by } Y^N_0 = 0 \text{ and} \]

\[Y^N_{n+1} = e^{A^T_N} Y^N_n + \frac{(e^{A^T_N} - I)}{A} \cdot (P_{N^2} F)(Y^N_n) + \int_{\frac{nT}{N}}^{\frac{(n+1)T}{N}} P_{N^2} e^{A \left(\frac{(n+1)T}{N} - s \right)} dW_s \]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N - 1\} \) and all \(N \in \mathbb{N} \).

- \(N \) time steps are used in \((Y^N_n)_{n \in \{0, 1, \ldots, N\}} \)
- \(Y^N_n \in P_{N^2}(H) \) for all \(n \in \{0, 1, \ldots, N\} \) and \(P_{N^2}(H) \) is \(N^2 \)-dimensional
- \(\frac{N}{\text{time steps}} \cdot \frac{N^2}{\dim(P_{N^2}(H))} = N^3 \) independent standard normal random variables needed to simulate \(Y^N_N \approx X_T \)
Exponential Euler scheme

\[Y^N_n : \Omega \rightarrow P_{N^2}(H), \ n \in \{0, 1, \ldots, N\}, \ N \in \mathbb{N}, \] given by \(Y^N_0 = 0 \) and

\[Y^N_{n+1} = e^{A \frac{T}{N}} Y^N_n + \left(e^{A \frac{T}{N}} - I \right) \frac{1}{A} \cdot (P_{N^2} F)(Y^N_n) + \int_{\frac{nT}{N}}^{\frac{(n+1)T}{N}} P_{N^2} e^{A \left(\frac{(n+1)T}{N} - s \right)} dW_s \]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N - 1\} \) and all \(N \in \mathbb{N} \).

- \(N \) time steps are used in \((Y^N_n)_{n \in \{0,1,\ldots,N\}} \)
- \(Y^N_n \in P_{N^2}(H) \) for all \(n \in \{0, 1, \ldots, N\} \) and \(P_{N^2}(H) \) is \(N^2 \)-dimensional
- \(N^3 \) independent standard normal random variables needed to simulate \(Y^N_N \approx X_T \)
Taylor expansions for SODEs

Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise

A new numerical method for SPDEs with additive noise

Exponential Euler scheme

\(Y^N_n : \Omega \rightarrow P_{N^2}(H), \ n \in \{0, 1, \ldots, N\}, \ N \in \mathbb{N}, \) given by \(Y^N_0 = 0 \) and

\[
Y^N_{n+1} = e^{A^T_n}Y^N_n + \frac{(e^{A^T_n} - I)}{A} \cdot (P_{N^2} F)(Y^N_n) + \int_{\frac{nT}{N}}^{\frac{(n+1)T}{N}} P_{N^2} e^{A(\frac{(n+1)T}{N} - s)} dW_s
\]

\(\mathbb{P} \text{-a.s. for all } n \in \{0, 1, \ldots, N - 1\} \) and all \(N \in \mathbb{N}. \)

- \(N \) time steps are used in \((Y^N_n)_{n \in \{0,1,\ldots,N\}}\)
- \(Y^N_n \in P_{N^2}(H) \) for all \(n \in \{0, 1, \ldots, N\} \) and \(P_{N^2}(H) \) is \(N^2 \)-dimensional

\[
\binom{N}{\text{time steps}} \cdot \binom{N^2}{\text{dim}(P_{N^2}(H))} = N^3 \quad \text{independent standard normal random variables needed to simulate } Y^N_N \approx X_T
\]
Exponential Euler scheme

$$Y^N_n : \Omega \to P_{N^2} (H), \ n \in \{0, 1, \ldots, N\}, \ N \in \mathbb{N}, \text{ given by } Y^N_0 = 0 \ \text{and}$$

$$Y^N_{n+1} = e^{A T_N} Y^N_n + \left(e^{A T_N} - I \right) A^{-1} \cdot (P_{N^2} F)(Y^N_n) + \int_{n T_N}^{(n+1) T_N} P_{N^2} e^{A \left(\frac{(n+1) T_N}{N} - s \right)} dW_s$$

\mathbb{P}-a.s. for all $n \in \{0, 1, \ldots, N - 1\}$ and all $N \in \mathbb{N}$.

- N time steps are used in $(Y^N_n)_{n \in \{0, 1, \ldots, N\}}$
- $Y^N_n \in P_{N^2} (H)$ for all $n \in \{0, 1, \ldots, N\}$ and $P_{N^2} (H)$ is N^2-dimensional
- N^3 independent standard normal random variables needed to simulate $Y^N_N \approx X_T$
Exponential Euler scheme

\[Y_N^n : \Omega \rightarrow P_{N^2}(H), \quad n \in \{0, 1, \ldots, N\}, \quad N \in \mathbb{N}, \text{ given by } Y_N^0 = 0 \text{ and } \]

\[Y_N^{n+1} = e^{A^T_N} Y_N^n + \frac{(e^{A^T_N} - I)}{A} \cdot (P_{N^2} F)(Y_N^n) + \int_{\frac{nT}{N}}^{\frac{(n+1)T}{N}} P_{N^2} e^{A\left(\frac{(n+1)T}{N} - s\right)} dW_s \]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N - 1\} \) and all \(N \in \mathbb{N} \).

- \(N \) time steps are used in \((Y_N^n)_{n \in \{0, 1, \ldots, N\}}\)
- \(Y_N^n \in P_{N^2}(H) \) for all \(n \in \{0, 1, \ldots, N\} \) and \(P_{N^2}(H) \) is \(N^2 \)-dimensional

\[\underbrace{N}_{\text{time steps}} \cdot \underbrace{N^2}_{\text{dim}(P_{N^2}(H))} = N^3 \quad \text{independent standard normal random variables needed to simulate } Y_N^n \approx X_T \]
Taylor expansions for SODEs
Taylor expansions for SPDEs
A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Exponential Euler scheme

\[Y_n^N : \Omega \rightarrow P_{N^2}(H), \ n \in \{0, 1, \ldots, N\}, \ N \in \mathbb{N}, \ \text{given by} \ Y_0^N = 0 \ \text{and} \]

\[Y_{n+1}^N = e^{A \frac{T}{N}} Y_n^N + \frac{(e^{A \frac{T}{N}} - I)}{A} \cdot (P_{N^2} F)(Y_n^N) + \int_{n\frac{T}{N}}^{(n+1)\frac{T}{N}} P_{N^2} e^{A \frac{(n+1)T}{N} - s} dW_s \]

\[\mathbb{P}\text{-a.s. for all } n \in \{0, 1, \ldots, N - 1\} \ \text{and all } N \in \mathbb{N}. \]

- \(N \) time steps are used in \((Y_n^N)_{n \in \{0, 1, \ldots, N\}} \)
- \(Y_n^N \in P_{N^2}(H) \) for all \(n \in \{0, 1, \ldots, N\} \) and \(P_{N^2}(H) \) is \(N^2 \)-dimensional
- \[\underbrace{N}_{\text{time steps}} \cdot \underbrace{N^2}_{\text{dim}(P_{N^2}(H))} = N^3 \]

\(\approx \) independent standard normal random variables needed to simulate \(Y_N^N \approx X_T \)
Exponential Euler scheme

\[Y_N^n : \Omega \rightarrow P_{N^2}(H), \ n \in \{0, 1, \ldots, N\}, \ N \in \mathbb{N}, \ \text{given by} \ Y_0^N = 0 \ \text{and} \]

\[Y_{n+1}^N = e^{A_T N} Y_n^N + \left(e^{A_T N^T} - I \right) \cdot (P_{N^2} F)(Y_n^N) + \int_{nT/N}^{(n+1)T/N} P_{N^2} e^{A((n+1)T/N - s)} dW_s \]

\(\mathbb{P} \)-a.s. for all \(n \in \{0, 1, \ldots, N - 1\} \) and all \(N \in \mathbb{N} \).

- \(N \) time steps are used in \((Y_N^n)_{n \in \{0,1,\ldots,N\}} \)
- \(Y_N^n \in P_{N^2}(H) \) for all \(n \in \{0, 1, \ldots, N\} \) and \(P_{N^2}(H) \) is \(N^2 \)-dimensional

\[\text{\(\sqrt{N} \) time steps} \cdot \sqrt{\text{dim}(P_{N^2}(H))} = N^3 \ \text{independent standard normal random variables needed to simulate} \ Y_N^N \approx X_T \]
Numerical results

We plot

$$\sup_{x \in [0,1]} \left| X_T(\omega, x) - Z^N_{N^2}(\omega, x) \right|$$

and

$$\sup_{x \in [0,1]} \left| X_T(\omega, x) - Y^N_N(\omega, x) \right|$$

for different $N \in \mathbb{N}$ and one random $\omega \in \Omega$.
Numerical results

We plot

\[\sup_{x \in [0,1]} \left| X_T(\omega, x) - Z_{N2}^N(\omega, x) \right| \]

and

\[\sup_{x \in [0,1]} \left| X_T(\omega, x) - Y_N^N(\omega, x) \right| \]

for different \(N \in \mathbb{N} \) and one random \(\omega \in \Omega \).
Linear implicit Euler scheme: $Z_{N}^{N_{2}}$ with $N = 8192$ ($N^{3} = 8193^{3} \approx 0.5 \cdot 10^{12}$ random variables) achieves the desired precision $\varepsilon = \frac{1}{100}$.
Linear implicit Euler scheme: $Z_N^{N^2}$ with $N = 8192$ ($N^3 = 8193^3 \approx 0.5 \cdot 10^{12}$ random variables) achieves the desired precision $\varepsilon = \frac{1}{100}$.
Linear implicit Euler scheme: $Z_N^{N^2}$ with $N = 8192$ ($N^3 = 8193^3 \approx 0.5 \cdot 10^{12}$ random variables) achieves the desired precision $\varepsilon = \frac{1}{100}$.
Linear implicit Euler scheme: $Z_N^{N^2}$ with $N = 8192$ ($N^3 = 8193^3 \approx 0.5 \cdot 10^{12}$ random variables) achieves the desired precision $\varepsilon = \frac{1}{100}$.
MATLAB code for $Z_{N^2}^N$ with $N = 8192$

```matlab
N = 8192; M = 67108864; A = -pi^2*(1:N).^2; Y = zeros(1,N);
for m=1:M
    y = dst(Y) * sqrt(2);
    Y = (Y + idst(y-y.^3)/sqrt(2)/M + randn(1,N)/sqrt(M))./(1 - A/M);
end
plot((0:N+1)/(N+1), [0, dst(Y)*sqrt(2), 0]);
```

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: \(\approx 6 \) days and 22 hours
MATLAB code for $Z^N_{N^2}$ with $N = 8192$

```matlab
N = 8192; M = 67108864; A = -pi^2*(1:N).^2; Y = zeros(1,N);
for m=1:M
    y = dst(Y) * sqrt(2);
    Y = (Y + idst(y-y.^3)/sqrt(2)/M + randn(1,N)/sqrt(M))./(1 - A/M);
end
plot((0:N+1)/(N+1), [0,dst(Y)*sqrt(2),0]);
```

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: \approx 6 days and 22 hours
MATLAB code for $Z_{N_2}^N$ with $N = 8192$

```matlab
N = 8192; M = 67108864; A = -pi^2*(1:N).^2; Y = zeros(1,N);
for m=1:M
    y = dst(Y) * sqrt(2);
    Y = (Y + idst(y-y.^3)/sqrt(2)/M + randn(1,N)/sqrt(M))./(1 - A/M);
end
plot((0:N+1)/(N+1), [0, dst(Y)*sqrt(2), 0]);
```

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: ≈ 6 days and 22 hours
MATLAB code for $Z_N^{N^2}$ with $N = 8192$

```matlab
N = 8192; M = 67108864; A = -pi^2*(1:N).^2; Y = zeros(1,N);
for m=1:M
    y = dst(Y) * sqrt(2);
    Y = (Y + idst(y-y.^3)/sqrt(2)/M + randn(1,N)/sqrt(M))./(1 - A/M);
end
plot((0:N+1)/(N+1), [0, dst(Y)*sqrt(2), 0]);
```

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: \approx 6 days and 22 hours
Linear implicit Euler scheme: $Z_N^{N^2}$ with $N = 8192$ ($N^3 = 8193^3 \approx 0.5 \cdot 10^{12}$ random variables) achieves the desired precision $\varepsilon = \frac{1}{100}$.
Linear implicit Euler scheme: $Z_N^{N^2}$ with $N = 8192$ ($N^3 = 8193^3 \approx 0.5 \cdot 10^{12}$ random variables) achieves the desired precision $\varepsilon = \frac{1}{100}$.

Exponential Euler scheme: Y_N^{N} with $N = 64$ ($N^3 = 64^3 \approx 2.6 \cdot 10^5$ random variables) achieves the desired precision $\varepsilon = \frac{1}{100}$.
A new numerical method for SPDEs with non-additive noise

A new numerical method for SPDEs with additive noise

Linear implicit Euler scheme: $Z_N^{N^2}$ with $N = 8192$ ($N^3 = 8193^3 \approx 0.5 \cdot 10^{12}$ random variables) achieves the desired precision $\varepsilon = \frac{1}{100}$

Exponential Euler scheme: Y_N^N with $N = 64$ ($N^3 = 64^3 \approx 2.6 \cdot 10^5$ random variables) achieves the desired precision $\varepsilon = \frac{1}{100}$
Taylor expansions for SODEs
Taylor expansions for SPDEs

A new numerical method for SPDEs with non-additive noise
A new numerical method for SPDEs with additive noise

Linear implicit Euler scheme: $Z^N_{N^2}$ with $N = 8192$ ($N^3 = 8193^3 \approx 0.5 \cdot 10^{12}$ random variables) achieves the desired precision $\varepsilon = \frac{1}{100}$

Exponential Euler scheme: Y^N_N with $N = 64$ ($N^3 = 64^3 \approx 2.6 \cdot 10^5$ random variables) achieves the desired precision $\varepsilon = \frac{1}{100}$
A new numerical method for SPDEs with non-additive noise

Precise number of used random variables

Approximation error

Linear implicit Euler scheme: $Z_N^{N^2}$ with $N = 8192$ ($N^3 = 8193^3 \approx 0.5 \cdot 10^{12}$ random variables) achieves the desired precision $\varepsilon = \frac{1}{100}$

Exponential Euler scheme: Y_N^N with $N = 64$ ($N^3 = 64^3 \approx 2.6 \cdot 10^5$ random variables) achieves the desired precision $\varepsilon = \frac{1}{100}$
MATLAB code for Y_N^N with $N = 64$

```matlab
N = 8192; M = 67108864; A = -pi^2*(1:N).^2; Y = zeros(1,N);
for m=1:M
    y = dst(Y) * sqrt(2);
    Y = (Y + idst(y-y.^3)/sqrt(2)/M + randn(1,N)/sqrt(M))./ (1 - A/M);
end
plot((0:N+1)/(N+1), [0, dst(Y)*sqrt(2), 0]);
```

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: $\approx 6 \text{ days and 22 hours}$
MATLAB code for Y_N^N with $N = 64$

```matlab
N = 8192; M = 67108864; A = −pi^2*(1:N).^2; Y = zeros(1,N);
Q = sqrt((exp(2*A/M)−1)/2./A);
for m=1:M
    y = dst(Y) * sqrt(2);
    Y = (Y + idst(y−y.^3)/sqrt(2)/M + randn(1,N)/sqrt(M))./(1 − A/M);
end
plot((0:N+1)/(N+1), [0, dst(Y)*sqrt(2), 0]);
```

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: ≈ 6 days and 22 hours
MATLAB code for Y_N^N with $N = 64$

```
N = 8192; M = 67108864; A = -pi^2*(1:N).^2; Y = zeros(1,N);
Q = sqrt((exp(2*A/M)-1)/2./A);
for m=1:M
    y = dst(Y) * sqrt(2);
    Y = exp(A/M).*Y+(exp(A/M)-1)./A.*idst(y-y.^3)/sqrt(2)+Q.*randn(1,N);
end
plot((0:N+1)/(N+1), [0,dst(Y)*sqrt(2),0]);
```

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: ≈ 6 days and 22 hours
MATLAB code for Y_N^N with $N = 64$

1. $N = 4096$; $M = 67108864$; $A = -\pi^2*{(1:N)}^2$; $Y = \text{zeros}(1,N)$;
2. $Q = \sqrt{(\exp(2*A/M) - 1)/2./A)}$;
3. for $m = 1:M$
 4. $y = \text{dst}(Y) * \sqrt{2}$;
 5. $Y = \exp(A/M) * Y + (\exp(A/M) - 1)/A * \text{idst}(y - y.^3)/\sqrt{2} + Q * \text{randn}(1,N)$;
4. end
5. plot((0:N+1)/(N+1), [0, dst(Y) * sqrt(2), 0]);

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: ≈ 6 days and 22 hours
MATLAB code for Y^N_N with $N = 64$

```matlab
N = 4096; M = 64; A = -pi^2*(1:N).^2; Y = zeros(1,N);
Q = sqrt((exp(2*A/M) - 1)/2./A);
for m=1:M
    y = dst(Y) * sqrt(2);
    Y = exp(A/M).*Y + (exp(A/M) - 1)./A.*idst(y-y.^3)/sqrt(2) + Q.*randn(1,N);
end
plot((0:N+1)/(N+1), [0, dst(Y)*sqrt(2), 0]);
```

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: ≈ 6 days and 22 hours
MATLAB code for Y^N_N with $N = 64$

```matlab
N = 4096; M = 64; A = -pi^2*(1:N).^2; Y = zeros(1,N);
Q = sqrt((exp(2*A/M)-1)/2./A);
for m=1:M
    y = dst(Y) * sqrt(2);
    Y = exp(A/M).*Y+(exp(A/M)-1)./A.*idst(y-y.^3)/sqrt(2)+Q.*randn(1,N);
end
plot((0:N+1)/(N+1), [0,dst(Y)*sqrt(2),0]);
```

CPU time on an INTEL PENTIUM D (3.0 GHz):

Linear implicit Euler scheme: \approx 6 days and 22 hours

Exponential Euler scheme: \approx 0.48 seconds
References: