
Stochastic differential equations (SDEs)
Computational problem and the Monte Carlo Euler method

Convergence for SDEs with globally Lipschitz continuous coefficients
Convergence for SDEs with superlinearly growing coefficients

On the global Lipschitz assumption in Computational

Stochastics

Arnulf Jentzen

Joint work with Martin Hutzenthaler

Faculty of Mathematics

Bielefeld University

10th August 2010

Arnulf Jentzen Global Lipschitz assumption



Stochastic differential equations (SDEs)
Computational problem and the Monte Carlo Euler method

Convergence for SDEs with globally Lipschitz continuous coefficients
Convergence for SDEs with superlinearly growing coefficients

Overview

1 Stochastic differential equations (SDEs)

2 Computational problem and the Monte Carlo Euler method

3 Convergence for SDEs with globally Lipschitz continuous coefficients

4 Convergence for SDEs with superlinearly growing coefficients

Arnulf Jentzen Global Lipschitz assumption



Stochastic differential equations (SDEs)
Computational problem and the Monte Carlo Euler method

Convergence for SDEs with globally Lipschitz continuous coefficients
Convergence for SDEs with superlinearly growing coefficients

Overview

1 Stochastic differential equations (SDEs)

2 Computational problem and the Monte Carlo Euler method

3 Convergence for SDEs with globally Lipschitz continuous coefficients

4 Convergence for SDEs with superlinearly growing coefficients

Arnulf Jentzen Global Lipschitz assumption



Stochastic differential equations (SDEs)
Computational problem and the Monte Carlo Euler method

Convergence for SDEs with globally Lipschitz continuous coefficients
Convergence for SDEs with superlinearly growing coefficients

Consider • a probability space (Ω,F , P) with a normal filtration (Ft)t∈[0,T ] and T > 0

• a standard (Ft)t∈[0,T ]-Brownian motion W : [0, T ] × Ω → R

• continuous functions µ, σ : R → R and

• a F0/B(R)-measurable mapping ξ : Ω → R with E|ξ|p <∞∀ p ∈ [1,∞).

Then let X : [0, T ] × Ω → R be an adapted stochastic process with

continuous sample paths which fulfills

Xt = ξ +

∫ t

0

µ(Xs) ds +

∫ t

o

σ(Xs) dWs P-a.s.

for all t ∈ [0, T ]. Short form:

dXt = µ(Xt) dt + σ(Xt) dWt , X0 = ξ, t ∈ [0, T ].
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Examples of SDEs I

Black-Scholes model with µ̄, σ̄, x0 ∈ (0,∞):

dXt = µ̄ Xt dt + σ̄ Xt dWt , X0 = x0, t ∈ [0, T ]

A SDE with a cubic drift and additive noise:

dXt = −X 3
t dt + dWt , X0 = 0, t ∈ [0, 1]

A SDE with a cubic drift and multiplicative noise:

dXt = −X 3
t dt + 6 Xt ◦ dWt , X0 = 1, t ∈ [0, 3]
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Examples of SDEs II

A stochastic Verhulst equation with η, x0 ∈ (0,∞):

dXt = Xt (η − Xt) dt + Xt dWt , X0 = x0, t ∈ [0, T ]

A Feller diffusion with logistic growth with η, x0 ∈ (0,∞):

dXt = Xt (η − Xt) dt +
√

Xt dWt , X0 = x0, t ∈ [0, T ]
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Weak approximation problem of the SDE (see, e.g., Kloeden & Platen (1992))

Suppose we want to compute

E

[

f(XT )
]

for a given smooth function f : R → R whose derivatives grow at most

polynomially.

For instance, f(x) = x2 for all x ∈ R and we want to compute

E

[

(XT )2
]

the second moment of the SDE.
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Approximation of E
[
f (XT)

]

The stochastic Euler scheme Y N
k : Ω → R, k ∈ {0, 1, . . . , N}, N ∈ N, is

given by Y N
0 = ξ and

Y N
k+1 = Y N

k +
T

N
· µ
(
Y N

k

)
+ σ

(
Y N

k

)
·
(

W (k+1)T
N

− W kT
N

)

for all k ∈ {0, 1, . . . , N − 1} and all N ∈ N.

Let Y
N,m
k : Ω → R, k ∈ {0, 1, . . . , N}, N ∈ N, for m ∈ N be independent

copies of the Euler approximations. The Monte Carlo Euler approximation

with N ∈ N time steps and M ∈ N Monte Carlo runs is then given by

1

M

(
M∑

m=1

f(Y
N,m
N )

)

≈ E

[

f(Y N
N )
]

≈ E

[

f(XT )
]

.
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The triangle inequality shows

∣
∣
∣E

[

f
(

XT

)]

− 1

N2

N2
∑

m=1

f
(

Y
N,m
N

)
∣
∣
∣

︸ ︷︷ ︸

error of the Monte Carlo Euler method

≤
∣
∣
∣E

[

f
(

XT

)]

− E

[

f
(
Y N

N

)]∣∣
∣

︸ ︷︷ ︸

time discretization error

+
∣
∣
∣E

[

f
(

Y N
N

)]

− 1

N2

N2
∑

m=1

f
(

Y
N,m
N

)∣∣
∣

︸ ︷︷ ︸

statistical error

for all N ∈ N.

The stochastic Euler scheme converges in the numerically weak sense if

lim
N→∞

∣
∣
∣E

[

f
(
XT

)]

− E

[

f
(

Y N
N

)]
∣
∣
∣ = 0

holds for every smooth function f : R → R whose derivatives have at most

polynomial growth (see, e.g., Kloeden & Platen (1992), Milstein (1995),

Talay (1996), Higham (2001), Rössler (2003)).
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Numerically weak convergence

Theorem (see, e.g., Kloeden & Platen (1992))

Let b, σ, f : R → R be four times continuously differentiable with at most

polynomially growing derivatives. Moreover, let µ, σ : R → R be globally

Lipschitz continuous. Then there is a real number C > 0 such that

∣
∣
∣
∣
∣
E

[

f(XT )
]

−E

[

f(Y N
N )
]
∣
∣
∣
∣
∣
≤ C · 1

N

holds for all N ∈ N.

The stochastic Euler scheme converges in the numerically weak sense if the

coefficients of the SDE are smooth and globally Lipschitz continuous.
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Numerically weak convergence yields

∣
∣
∣E

[

f
(

XT

)]

− 1

N2

N2
∑

m=1

f
(

Y
N,m
N

)
∣
∣
∣

≤
∣
∣
∣E

[

f
(
XT

)]

− E

[

f
(

Y N
N

)]
∣
∣
∣+
∣
∣
∣E

[

f
(
Y N

N

)]

− 1

N2

N2
∑

m=1

f
(
Y

N,m
N

)
∣
∣
∣

≤ C · 1

N
+ Cε ·

1

N(1−ε)
≤ (C + Cε) ·

1

N(1−ε)
P-a.s.

for all N ∈ N and all ε ∈ (0, 1) with an appropriate constant C ∈ (0,∞)
and appropriate random variables Cε : Ω → [0,∞), ε ∈ (0, 1).

The Monte Carlo Euler method converges if the coefficients of the SDE are

smooth and globally Lipschitz continuous.
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+ Cε ·

1

N(1−ε)
≤ (C + Cε) ·

1

N(1−ε)
P-a.s.

for all N ∈ N and all ε ∈ (0, 1) with an appropriate constant C ∈ (0,∞)
and appropriate random variables Cε : Ω → [0,∞), ε ∈ (0, 1).

The Monte Carlo Euler method converges if the coefficients of the SDE are

smooth and globally Lipschitz continuous.
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Examples of SDEs I

The global Lipschitz assumption on the coefficients of the SDE is a serious

shortcoming:

Black-Scholes model with µ̄, σ̄, x0 ∈ (0,∞):

dXt = µ̄ Xt dt + σ̄ Xt dWt , X0 = x0, t ∈ [0, T ]
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Open problem

Convergence of Euler’s method

lim
N→∞

E
∣
∣XT − Y N

N

∣
∣ = 0, lim

N→∞

∣
∣
∣E

[

(XT )2
]

− E

[(
Y N

N

)2
]∣
∣
∣ = 0

for SDEs with superlinearly growing coefficients such as

a SDE with a cubic drift and additive noise:

dXt = −X 3
t dt + dWt , X0 = 0, t ∈ [0, 1]

remained an open problem.
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Gyöngy (1998) established pathwise convergence, i.e.

lim
N→∞

∣
∣XT − Y N

N

∣
∣ = 0 P-a.s..

Higham, Mao and Stuart (2002) showed a conditional result: If Euler’s

method has bounded moments

sup
N∈N

E

[

sup
0≤n≤N

∣
∣Y N

n

∣
∣(2+ε)

]

< ∞

for some ε > 0, then Euler’s method converges in the sense

lim
N→∞

E
∣
∣XT − Y N

N

∣
∣ = 0, lim

N→∞

∣
∣
∣E

[

(XT )2
]

− E

[(
Y N

N

)2
]∣
∣
∣ = 0.

“In general, it is not clear when such moment bounds can be expected

to hold for explicit methods with f , g ∈ C1.“
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Theorem (Hutzenthaler & J (2009))

Suppose P
[
σ(ξ) 6= 0

]
> 0 and let α, C > 1 be such that

|µ(x)| ≥ |x|α
C

and |σ(x)| ≤ C|x|

holds for all |x| ≥ C. If the exact solution of the SDE satisfies

E

[

|XT |p
]

< ∞ for one p ∈ [1,∞), then

lim
N→∞

E

[∣
∣XT − Y N

N

∣
∣p
]

= ∞, lim
N→∞

∣
∣
∣E

[

|XT |p
]

− E

[∣
∣Y N

N

∣
∣p
]∣
∣
∣ = ∞

holds.

Strong and numerically weak convergence fails to hold if the diffusion

coefficient grows at most linearly and the drift coefficient grows superlinearly.
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Suppose P
[
σ(ξ) 6= 0

]
> 0 and let α, C > 1 be such that

|µ(x)| ≥ |x|α
C

and |σ(x)| ≤ C|x|

holds for all |x| ≥ C. If the exact solution of the SDE satisfies

E

[

|XT |p
]

< ∞ for one p ∈ [1,∞), then

lim
N→∞

E

[∣
∣XT − Y N

N

∣
∣p
]

= ∞, lim
N→∞

∣
∣
∣E

[

|XT |p
]

− E

[∣
∣Y N

N

∣
∣p
]∣
∣
∣ = ∞

holds.

Strong and numerically weak convergence fails to hold if the diffusion

coefficient grows at most linearly and the drift coefficient grows superlinearly.
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Stochastic differential equations (SDEs)
Computational problem and the Monte Carlo Euler method

Convergence for SDEs with globally Lipschitz continuous coefficients
Convergence for SDEs with superlinearly growing coefficients

Examples of SDEs I

Divergence of Euler’s method

lim
N→∞

E
∣
∣XT − Y N

N

∣
∣ = ∞, lim

N→∞

∣
∣
∣E

[

(XT )2
]

− E

[(
Y N

N

)2
]∣
∣
∣ = ∞

holds for:

A SDE with a cubic drift and additive noise:

dXt = −X 3
t dt + dWt , X0 = 0, t ∈ [0, 1]

A SDE with a cubic drift and multiplicative noise:

dXt = −X 3
t dt + 6 Xt ◦ dWt , X0 = 1, t ∈ [0, 3]
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Convergence for SDEs with globally Lipschitz continuous coefficients
Convergence for SDEs with superlinearly growing coefficients

Examples of SDEs II

Divergence of Euler’s method

lim
N→∞

E
∣
∣XT − Y N

N

∣
∣ = ∞, lim

N→∞

∣
∣
∣E

[

(XT )2
]

− E

[(
Y N

N

)2
]∣
∣
∣ = ∞

holds for:

A stochastic Verhulst equation with η, x0 ∈ (0,∞):

dXt = Xt (η − Xt) dt + Xt dWt , X0 = x0, t ∈ [0, T ]

A Feller diffusion with logistic growth with η, x0 ∈ (0,∞):

dXt = Xt (η − Xt) dt +
√

Xt dWt , X0 = x0, t ∈ [0, T ]
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Stochastic differential equations (SDEs)
Computational problem and the Monte Carlo Euler method

Convergence for SDEs with globally Lipschitz continuous coefficients
Convergence for SDEs with superlinearly growing coefficients

Proof of divergence of Euler’s method in the numerically weak

sense

For simplicity we restrict our attention to the SDE

dXt = −X 3
t dt + dWt , X0 = 0, t ∈ [0, 1]

and show

lim
N→∞

E

[∣
∣XT − Y N

N

∣
∣p
]

= ∞, lim
N→∞

∣
∣
∣E

[

|XT |p
]

− E

[∣
∣Y N

N

∣
∣p
]∣
∣
∣ = ∞

for every p ∈ [1,∞). Simple observation: It is sufficient to show

lim
N→∞

E
∣
∣Y N

N

∣
∣ = ∞.
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Stochastic differential equations (SDEs)
Computational problem and the Monte Carlo Euler method

Convergence for SDEs with globally Lipschitz continuous coefficients
Convergence for SDEs with superlinearly growing coefficients

Proof: Define “event of instability”

ΩN :=

{

ω ∈ Ω

∣
∣
∣
∣

sup
k∈{1,2,...,N−1}

∣
∣
∣W k+1

N
(ω) − W k

N
(ω)
∣
∣
∣ ≤ 1,

∣
∣
∣W 1

N
(ω) − W0(ω)

∣
∣
∣ ≥ 3N

}

for every N ∈ N. Claim:
∣
∣YN

k (ω)
∣
∣ ≥ (3N)(2(k−1)) ∀ k ∈ {1, 2, . . . , N} (1)

for every ω ∈ ΩN and every N ∈ N.

We fix N ∈ N, ω ∈ ΩN and show (1) by induction on k ∈ {1, 2, . . . , N}.

∣
∣Y N

1 (ω)
∣
∣ =

∣
∣
∣
∣
Y N

0 (ω) − 1

N

(
Y N

0 (ω)
)3

+
(

W 1
N
(ω) − W0(ω)

)
∣
∣
∣
∣

=
∣
∣
∣W 1

N
(ω) − W0(ω)

∣
∣
∣ ≥ 3N
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In particular, we obtain

∣
∣Y N

N (ω)
∣
∣ ≥ (3N)(2(N−1)) (2)

for all ω ∈ ΩN and all N ∈ N. Recall that
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holds and therefore

P
[
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≥ e−cN2

(3)

for all N ∈ N with c ∈ (0,∞) appropriate. Combining (2) and (3) shows

E
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∣Y N
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∣ ≥ P

[
ΩN

]
· (3N)(2(N−1)) ≥ e−cN2 · (3N)(2(N−1)) N→∞−−−→ ∞. �
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Simulations of the first absolute moment of the solution of a SDE

Consider the SDE

dXt = −10 sgn(Xt) |Xt |1.1 dt + 4 dWt , X0 = 0, t ∈ [0, 10].

The first absolute moment of XT with T = 10 satisfies

E

[

|X10|
]

≈ 0.7141 .
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Simulations for a SDE with a cubic drift and multiplicative noise

Consider the SDE

dXt = −X 3
t dt + 6 Xt ◦ dWt , X0 = 1, t ∈ [0, 3].

The second moment of XT with T = 3 satisfies

E
[
(X3)

2
]
≈ 1.5423 .

Different simulation values of the Monte Carlo Euler method with 300 time

steps and 10 000 Monte Carlo runs:

NaN 0.5097 NaN 0.5378 0.5197

0.5243 NaN NaN 0.5475 NaN
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Stochastic differential equations (SDEs)
Computational problem and the Monte Carlo Euler method

Convergence for SDEs with globally Lipschitz continuous coefficients
Convergence for SDEs with superlinearly growing coefficients

Do we need new numerical methods which converge in the numerically

weak sense?

Central observation: Numerically weak convergence fails to hold, i.e.

lim
N→∞

E

[

(Y N
N )2
]

= ∞

but the Monte Carlo Euler method

lim
N→∞

1

N2





N2
∑

m=1

(Y
N,m
N )2



 = E

[

(XT )2
]

P-a.s.

nevertheless converges for a large class of SDEs.
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Theorem (Hutzenthaler & J (2009))
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functions with at most polynomially growing derivatives. Moreover, let σ be
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Convergence for SDEs with globally Lipschitz continuous coefficients
Convergence for SDEs with superlinearly growing coefficients

The theorem applies to ...

Black-Scholes model with µ̄, σ̄, x0 ∈ (0,∞):

dXt = µ̄ Xt dt + σ̄ Xt dWt , X0 = x0, t ∈ [0, T ]

A SDE with a cubic drift and additive noise:

dXt = −X 3
t dt + dWt , X0 = 0, t ∈ [0, 1]

A SDE with a cubic drift and multiplicative noise:

dXt = −X 3
t dt + 6 Xt ◦ dWt , X0 = 1, t ∈ [0, 3]

A stochastic Verhulst equation with η, x0 ∈ (0,∞):

dXt = Xt (η − Xt) dt + Xt dWt , X0 = x0, t ∈ [0, T ]
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Simulations for a SDE with a cubic drift and additive noise

Consider the SDE

dXt = −X 3
t dt + dWt , X0 = 0, t ∈ [0, 1].

The second moment of XT with T = 1 satisfies

E
[
(X3)

2
]
≈ 0.4529 .

Different simulation values of the Monte Carlo Euler method:

N = 20 N = 21 N = 22 N = 23 N = 24

1.4516 0.5166 0.4329 0.5308 0.4285

N = 25 N = 26 N = 27 N = 28 N = 29

0.4452 0.4602 0.4517 0.4548 0.4537
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The second moment of XT with T = 1 satisfies
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2
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≈ 0.4529 .

Different simulation values of the Monte Carlo Euler method:

N = 20 N = 21 N = 22 N = 23 N = 24
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Conclusion

Strong and numerically weak error estimates are convenient since stochastic

calculus is an L2-calculus (Itô isometry, etc.).

But, if Euler’s method is used to solve one of the nonlinear problems above,

then one needs different concepts such as
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