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I. Examples and Counterexamples (5 points each). Do not give proofs, but clearly write
a short answer or indicate your proposed example or counterexample.

1. Give examples of:
(a) A tree with average degree 8/5.
(b) A tree with average degree 5/3.
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2. Draw an example of a graph with a maximal clique that is not the maximum clique of the
graph. Clearly identify the two cliques.
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3. Give an example of a graph that cannot be expressed as the union of two bipartite sub-
graphs.
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4. Give an example of an even closed walk that contains no cycle. Draw the graph and write
out the standard vertex-edge list form of the walk.
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5. Draw an example of a graph that contains a copy of C; as a subgraph, but does not contain
a copy of Cy as an induced subgraph.

6. Give an example of a graph that is 3-partite but not 2-partite.

VAN

7. Give an example of a graph with smaller radius than diameter.

P

8. Draw the deBruijn graph that produces all binary strings of length 3 by recording edge
labels on an Eulerian circuit (and looking at every possible consecutive 3 binary digits).
Label all vertices and edges appropriately.
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II. Constructions and Algorithms (15 points each). Do not write proofs, but do give
clear, concise answers, showing the steps of any process or algorithm used.

9. Recall that for ¢ € Z and b € Z™, a mod b = r, where 0 < r < b is obtained uniquely by
the integer equation @ = bg + r. Define the simple graph G as having vertex set and edge
set

V(G) = {0,1,2,3,4,5,6,7,8},  and
E(G) = {{i,j}:4,j€V(G@),(i—j) mod 9 € {1,3,6,8}}.

(a) Draw G, labeling all vertices.
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(c) Write down an Eulerian circuit in G by listing the vertices in order that they are
visited by the circuit.
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(d) Find a bipartite subgraph of G with at least e(G)/2 edges.

H
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10. Determine whether the sequence (5, 5,4,4,2,2,1,1) is the degree sequence of some simple
graph. Show steps justifying why or why not, and draw a graph with this degree sequence
if one exists.
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III. Proofs (10 points each). Partial credit for setting up a good proof structure without
completing a proof.

11. Let k € Z*, and assume G is a graph that has exactly 2k vertices with odd degree. Prove
that there is no decomposition of GG into k — 1 or fewer paths.
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12. Let G be a loopless graph. Let H; and H, be maximal induced subgraphs of G such that
both H; and H, have minimum degree > 2. Prove that H; = H,. (This proves that the
maximal subgraph of G having minimum degree > 2, called the 2-core of G, is unique.
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13. Let G be a connected graph, and let e be an edge of G. Prove that e is a cut-edge if and
only if e belongs to every spanning tree of G. (If you use a result from the section without
proof, be sure to quote it or describe it carefully.)
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