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4.2 A characterization for 2-connectedness 

Thm 4.2.2 (Whitney) A graph G with ¸3 vertices is 2-connected 
iff 8 u,v2 V(G) there exist ¸2 internally disjoint u,v-paths in G. 

(( Easy) Let S={w}µV(G). Let u,v2 G-S. 
Let P,Q be internally disjoint paths in G 

w can be on at most one of these paths, so removing w fails to 
disconnect u and v. 
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4.2 A characterization for 2-connectedness 

Thm 4.2.2 (Whitney) A graph G with ¸3 vertices is 2-connected 
iff 8 u,v2 V(G) there exist ¸2 internally disjoint u,v-paths in G. 
()) Assume G is 2-connected.  Let u,v2V(G).   
Induction on d(u,v): 
w is closer to u, and so there exist u,w-paths 
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4.2 A characterization for 2-connectedness 
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G-w is connected: there is a u,v path in G-w, called R. 

R 
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4.2 A characterization for 2-connectedness 
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Now look at the original G. 

Find two internally  
disjoint u,v-paths 
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4.2 Expansion Lemma 
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Lemma 4.2.3 (Expansion Lemma).  If G is a k-connected 
(loopless) graph, and G’ is obtained by adding a new vertex y 
with ¸k neighbors in G, then G’ is k-connected. 
Proof for k=2. 

n(G)¸3 is required by k=2. 
No single vertex can be cut to disconnect G’. 
Try u: G-u still connected, and y connected through v, 
 so G’ is still connected. 
Try y: G’-y=G is connected. 
Try w: Like first case, but y connected to both u and v in G’-w 
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4.2 Extended characterization for 2-connectedness 

Thm 4.2.4 Let a graph G have ¸3 vertices.  The following are 
equivalent (TFAE): 
(A) G is connected and has no cut-vertex, 
(B) For all x,y2 V(G), there exist internally disjoint x,y-paths, 
(C) For all x,y2 V(G), there is a cycle through x and y, 
(D) δ(G)¸1, and every pair of edges lies on a common cycle. 

Proof. 
(A) , (B) already done. 

(B) , (C) 
    cycle iff two disjoint paths 
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4.2 Extended characterization for 2-connectedness 

(D))(C) (δ(G)¸1, any 2 edges are in some same cycle)any 2 
vertices are in some same cycle) 

Let x,y2 V(G).  Min degree forces each  
  incident to an edge: 

Case 1. x$y 
n(G)¸3, so there is a third vertex z.  A cycle through these two 
edges also goes through x,y. 

Case 2. x$y 
A cycle through these two edges also goes through x,y. 
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4.2 Extended characterization for 2-connectedness 

(A)Æ(C))(D): n(G)¸3 and G is connected ) δ(G)¸1. 
Let e,f2E(G) be edges,  
with e=uv, f=xy. 

Construct G’ by two 
expansions.  G’ is 
still 2-connected 

(C))G’ has a cycle 
through x,y.  Edit the  
cycle to get a cycle 
Through e,f  
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Definition of subdivision 
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G with edge uv 

G’ from G by subdividing 
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Subdivisions preserve 2-connectedness 
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Corollary 4.2.6.  If G is 2-connected, then so is the graph G’ 
obtained from G by subdividing an edge of G. 
Proof.  G 2-connected)n(G)¸3.  Let e,f2E(G’).  We want a 
common cycle containing e,f. 

Cases 1a, 1b: neither e nor f within subdivision 
    Case 1a 
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Subdivisions preserve 2-connectedness 
12 

Corollary 4.2.6.  If G is 2-connected, then so is the graph G’ 
obtained from G by subdividing an edge of G. 
Proof.  G 2-connected)n(G)¸3.  Let e,f2E(G’).  We want a 
common cycle containing e,f. 

Cases 1a, 1b: neither e nor f within subdivision 
    Case 1b 

u v 

G’ 

w 

e f 

u v 

G 

e f 

Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553.  



Subdivisions preserve 2-connectedness 
13 

Corollary 4.2.6.  If G is 2-connected, then so is the graph G’ 
obtained from G by subdividing an edge of G. 
Proof.  G 2-connected)n(G)¸3.  Let e,f2E(G’).  We want a 
common cycle containing e,f. 

Cases 2: e is within subdivision, but not f 
     

u v 
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Subdivisions preserve 2-connectedness 
14 

Corollary 4.2.6.  If G is 2-connected, then so is the graph G’ 
obtained from G by subdividing an edge of G. 
Proof.  G 2-connected)n(G)¸3.  Let e,f2E(G’).  We want a 
common cycle containing e,f. 

Cases 3: e,f both within subdivision.  Edge d must exist.     

u v 
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w e f u v 
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Ear decompositions and 2-connected graphs 
15 

Definition  An ear decomposition of G is a sequence of graphs  
   P0,P1,…,Pi,…,Pk 
of subgraphs of G such that: 
(1) P0 is a cycle in G, 
(2) For all i¸1, Pi is an ear of P0,P1,…,Pi-1, meaning 
 (i) Pi is a path 
 (ii) Pi is contained in a cycle of P0,P1,…,Pi-1,Pi 

 ( i i i ) Pi i s max ima l w. r. t . i n te rna l ver t i ces hav ing 
degree 2   in P0,P1,…,Pi-1,Pi 

(2) P0,P1,…,Pi,…,Pk decompose G       

Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553.  



Ear decompositions and 2-connected graphs 
16 

Example  Ear decomposition of a graph. 

Note that P3 cannot come before P2 in the order. 
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Ear decompositions and 2-connected graphs 
17 

Example  Highly connected graphs have ear decompositions. 
Suppose G has a cycle containing all of its vertices.  Then all 
other edges can be added as ears one at a time, arbitrarily. 

P0 
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Ear decompositions and 2-connected graphs 
18 

Example  Graphs with connectivity 1 do not have ear 
decompositions. 

The ear decomposition must start on one side of u since there is 
no cycle containing u.  But then there is no way to add u within 
some path Pi that is an ear! 

u 

cut-vertex u 
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Ear decompositions and 2-connected graphs 
19 

…except  The 2-vertex graph with 2 or more parallel edges.  
(Remember, in Chapter 4 there are no loops!) 

Set P0 equal to a 2-cycle, P1,P2,… handle any remaining edges. 

u v 
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Ear decomposition iff 2-connected (and n(G)¸3) 20 

Theorem 4.2.8 (Whitney)  G has an ear decomposition iff G is 
2-connected.  We add the condition n(G)¸3 to both sides to 
handle the exceptional case. 
Proof. (() 
Let P0,P1,…,Pk be an ear decomposition of G. 
Assume P0 is larger than a 2-cycle (otherwise… exercise). 
Cycles are 2-connected. 
Get P0[ P1 by expansion… 

And then repeated  
subdivision. 

2-connectivity is preserved for both operations.  Repeat for P2,… 

P0 

P0 

P1 
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Ear decomposition iff 2-connected (and n(G)¸3) 21 

Theorem 4.2.8 (Whitney) Proof. ()) 
Assume G is 2-connected. By Thm. 4.2.4, G has two edges not 
both with the same neighbors.  And G has a cycle containing 
these two edges.  This cycle must have at least one other edge. 

Either way, a cycle with ¸3 edges exists in G.  Call it P0. 

x y z ? x ? ? y 

P0 
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Ear decomposition iff 2-connected (and n(G)¸3) 22 

Theorem 4.2.8 (Whitney) Proof. ()) 
Assume G is 2-connected. By Thm. 4.2.4, G has two edges not 
both with the same neighbors.  And G has a cycle containing 
these two edges.  This cycle must have at least one other edge. 

Either way, a cycle with ¸3 edges exists in G.  Call it P0. 

x y z ? x ? ? y 
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Theorem 4.2.8 (Whitney) Proof. () continued) 
Add all edges between two vertices 
of the cycle; call them P1,…,Pj. 

If there is an edge uv not in P0, Thm. 4.2.4 says there is a cycle 
C’ containing uv and an edge on P0.   
Delete vertices between the first and last vertices touched within 
P0. 

Repeat combinations of these two steps until G is decomposed. 

Ear decomposition iff 2-connected (and n(G)¸3) 23 
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4.2.10 Theorem.  A graph is 2-connected iff it has a closed-ear 
decomposition, and every cycle in a 2-edge-connected graph is 
the initial cycle in some such decomposition. 

4.2.13 Theorem (Robbins 1939)  A graph has a strong 
orientation iff it is 2-edge-connected. 

Plus supporting definitions and examples on closed ears, closed-
ear decompositions, connectivity for digraphs, (directed) ears in 
digraphs.  See pp.164-166. 

Material skipped by slides 24 
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Local connectivity considers the number of alternative paths 
between a pair of vertices x,y, and the minimum size structure 
needed to be deleted to disconnect x from y. 

Global connectivity considers the number of alternative paths 
between any pair of vertices, and the minimum size structure 
needed to be deleted to disconnect the graph. 

We have seen that (for n(G) ¸ 3) 2-connectedness is equivalent 
to there existing 2 internally disjoint paths between any pair of 
vertices.  We want to extend this idea: 

Locally:  compare alternative x,y-paths versus minimum x,y-cuts 
Globally:  find vertex pairs optimizing the local values  

Local connectivity and Menger’s Theorem 25 
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4.2.15 Defn. Let {x,y}2V(G),  SµV(G)-{x,y},  FµE(G),  X,YµV(G) 

(1) S is an x,y-separator (x,y-cut) if G-S has no x,y-path 
(1’) κ(x,y) = minimum size of an x,y-separator  
(2) λ(x,y) = maximum # of pairwise internally disjoint x,y-paths 

(3) F is an x,y-disconnecting set if G-F has no x,y-path 
(3’) κ’(x,y) = minimum size of an x,y-disconnecting set 
(4) λ’(x,y) = maximum # of pairwise edge-disjoint x,y-paths 

(5) An X,Y-path starts in X, ends in Y, otherwise avoids X[Y 

Definitions for local connectivity 26 
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4.2.16 Example  

Examples for local connectivity (1) 27 
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x,y-connectivity 
λ(x,y) ¸ 4  (4 int. disj. x,y-paths) 
κ(x,y) · 4  (cut =     ) 

w,z-connectivity 
λ(w,z) ¸ 3  (3 int. disj. w,z-paths) 
κ(w,z) · 3  (cut =     ) 
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4.2.16 Example  

Examples for local connectivity (2) 28 

b y 

c v 

d x 
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w u 

w,z-connectivity (from prev. slide) 
λ(w,z) ¸ 3  (3 int. disj. w,z-paths) 
κ(w,z) · 3  (cut =     ) 

b y 

c v 

d x 

z 

a 

w u 

w,z-edge-connectivity 
λ’(w,z) ¸ 4   
    (4 int. edge-disj. w,z-paths) 
κ’(w,z) · 4   
    (disconnecting set touches     ) 
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(http://www.iit.edu/csl/am/about/menger/about.shtml) 

1902 born in Vienna  
1920-1924 Ph.D. in Mathematics, University of Vienna  
[1944-1][1944-6] 1946-1971 Professor of Mathematics, IIT 
1985 died in Highland Park near Chicago 

In 1932 Menger published Kurventheorie which contains  
the famous n-Arc Theorem: 

Let G be a graph with A and B two disjoint n-tuples of vertices. Then 
either G contains n pairwise disjoint AB-paths (each connecting a 
point of A and a point of B), or there exists a set of fewer than n 
vertices that separates A and B. 

Other Research Areas: Theory of Curves and Dimension Theory, A General 
Theory of Length and the Calculus of Variations, Probabilistic Metric Spaces, 
New Foundations for the Bolyai-Lobachevsky Geometry, and many others 

Karl Menger 29 
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4.2.17 Theorem (Menger 1927). If x,y are vertices of a graph G 
and xy2E(G), then κ(x,y) = λ(x,y). 
Proof (assume G simple) 
κ(x,y) ¸ λ(x,y) is easy: an x,y-cut must have ¸1 vertex from each 
of a set of pairwise internally disjoint x,y-paths. 

κ(x,y) · λ(x,y): Set k= κ(x,y).  We find k pairwise internally disjoint 
x,y-paths by induction on n(G). 
Base case (n(G)=2) 
xy2E(G) means G is empty, and κ(x,y) = λ(x,y)=0. 

Inductive step (n(G)>2) 
Let S be a minimum x,y-cut (with |S|=k).  Consider cases…  

Menger’s Theorem 30 
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Structure of G determines cases. 
Fact  S does not properly contain 
N(x) or N(y).  N(x) and N(y) are 
themselves x,y-cuts. 

Case 1.  9S with SµN(x)[N(y). 
Define  V1=vertices of all x,S-paths 
  V2=vertices of all S,y-paths 
Properties of V1, V2: 
 S=V1Å V2 
 V1Å (N(y)-S)=;  
 V2Å (N(x)-S)=; 

Menger’s Theorem (2) 31 
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From this decomposition generate 
new graphs H1 and H2. 

Properties 
n(H1),n(H2) < n(G) 
κH1(x,y’) = κH2(x’,y) = k = |S| 
By induction, k pairwise internally disjoint x,y’-paths exist in H1.  
Similarly for x’,y-paths in H2.   
Piece together k pairwise internally disjoint x,y-paths in G. 

Menger’s Theorem (3) 32 
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Menger’s Theorem (4) 33 

y x 

S 

N(x) N(y) 

G 

Case 2. All minimum x,y-cuts  
S satisfy SµN(x)[N(y). 

Case 2A.  There exists some vertex 
v2{x}[N(x)[N(y)[{y}.  Then v is in no minimum x,y-cut,  
and κ(G-v)=k.  Induct on G-v to find κG-v(x,y) = λG-v(x,y)=k. 

Case 2B.  There exists some vertex u2N(x)\N(y).  Then u must 
be in every minimum x,y-cut in order to separate x from y.   
Therefore κ(G-u)=k-1.   
Induct on G-u to find κG-u(x,y) = λG-u(x,y)=k-1. 
Observe that the path x,u,y exists in G but not in G-u. 
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Case 2C. All minimum x,y-cuts  
S satisfy SµN(x)[N(y), and  
N(x),N(y) partition V(G)-{x,y}. 

The set of x,y-paths are in natural bijection with the set of edges 
between N(x) and N(y).   
Therefore S is a vertex cover of G[N(x)[N(y)].   
König-Egerváry gives a matching of size |S|=k.  
The matching edges correspond to pairwise internally disjoint 
x,y-paths, and so κ(x,y) = λ(x,y)=k. 

Menger’s Theorem (5) 34 
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