$4.2 k$-connected graphs

This copyrighted material is taken from Introduction to Graph Theory, $2^{\text {nd }}$ Ed., by Doug West; and is not for further distribution beyond this course.

These slides will be stored in a limited-access location on an IIT server and are not for distribution or use beyond Math 454/553.

4.2 A characterization for 2-connectedness

Thm 4.2.2 (Whitney) A graph G with , 3 vertices is 2-connected iff $8 u, v 2 \vee(G)$ there exist , 2 internally disjoint u, v-paths in G.
((Easy) Let $S=\{w\} \mu \mathrm{V}(G)$. Let $u, v 2 \mathrm{G}-\mathrm{S}$.
Let P, Q be internally disjoint paths in G

w can be on at most one of these paths, so removing w fails to disconnect u and v.

4.2 A characterization for 2-connectedness

Thm 4.2.2 (Whitney) A graph G with , 3 vertices is 2 -connected iff $8 u, v 2 \vee(G)$ there exist , 2 internally disjoint u, v-paths in G.
()) Assume G is 2 -connected. Let $u, v 2 \mathrm{~V}(G)$.

Induction on $\mathrm{d}(u, v)$:
w is closer to u, and so there exist u, w-paths

4.2 A characterization for 2-connectedness

$G-w$ is connected: there is a u, v path in $G-w$, called R.

4.2 A characterization for 2-connectedness

Now look at the original G.

Find two internally disjoint u, v-paths

4.2 Expansion Lemma

Lemma 4.2.3 (Expansion Lemma). If G is a k-connected (loopless) graph, and G^{\prime} is obtained by adding a new vertex y with ${ }^{k} k$ neighbors in G, then G^{\prime} is k-connected.
Proof for $k=2$.

$n(G), 3$ is required by $k=2$.
No single vertex can be cut to disconnect G^{\prime}.
Try u : G-u still connected, and y connected through v, so G^{\prime} is still connected.
Try y : $G^{\prime}-y=G$ is connected.
Try w: Like first case, but y connected to both u and v in $G^{\prime}-w$

4.2 Extended characterization for 2-connectedness

Thm 4.2.4 Let a graph G have , 3 vertices. The following are equivalent (TFAE):
(A) G is connected and has no cut-vertex,
(B) For all $x, y 2 \vee(G)$, there exist internally disjoint x, y-paths,
(C) For all $x, y 2 \vee(G)$, there is a cycle through x and y,
(D) $\delta(G), 1$, and every pair of edges lies on a common cycle.

Proof.
(A) , (B) already done.
(B), (C)

$$
\begin{equation*}
\text { (4) } \quad C=P_{1}\left[P_{2}\right. \tag{v}
\end{equation*}
$$

cycle iff two disjoint paths

$$
P_{2}
$$

4.2 Extended characterization for 2-connectedness

$(D))(C)(\delta(G), 1$, any 2 edges are in some same cycle) any 2 vertices are in some same cycle)

Let $x, y 2 \mathrm{~V}(G)$. Min degree forces each incident to an edge:

Case 1. x\$y

$\mathrm{n}(G), 3$, so there is a third vertex z. A cycle through these two edges also goes through x, y.

Case 2. $\mathrm{x} \$ \mathrm{y}$

A cycle through these two edges also goes through x, y.

4.2 Extended characterization for 2-connectedness

$(A) \nLeftarrow(C))(D): n(G), 3$ and G is connected $) \delta(G), 1$.
Let e,f2E(G) be edges,
with $e=u v, f=x y$.

Construct G^{\prime} by two expansions. G^{\prime} is still 2-connected

(C)) G^{\prime} has a cycle through x, y. Edit the cycle to get a cycle
 Through e,f

Definition of subdivision

G with edge $u v$

G
G^{\prime} from G by subdividing edge uv

G^{\prime}

Subdivisions preserve 2-connectedness

Corollary 4.2.6. If G is 2 -connected, then so is the graph G^{\prime} obtained from G by subdividing an edge of G.
Proof. G 2-connected)n(G), 3 . Let e,f2E(G'). We want a common cycle containing e,f.

Cases 1a, 1b: neither e nor f within subdivision

Subdivisions preserve 2-connectedness

Corollary 4.2.6. If G is 2 -connected, then so is the graph G^{\prime} obtained from G by subdividing an edge of G.
Proof. G 2-connected)n(G), 3 . Let e,f2E(G'). We want a common cycle containing e,f.

Cases 1a, 1b: neither e nor f within subdivision

G^{\prime}

Case 1b

G

Subdivisions preserve 2-connectedness

Corollary 4.2.6. If G is 2 -connected, then so is the graph G^{\prime} obtained from G by subdividing an edge of G.
Proof. G 2-connected) $n(G), 3$. Let e,f2E($\left.G^{\prime}\right)$. We want a common cycle containing e,f.

Cases 2: e is within subdivision, but not f

G'

G

Subdivisions preserve 2-connectedness

Corollary 4.2.6. If G is 2 -connected, then so is the graph G^{\prime} obtained from G by subdividing an edge of G.
Proof. G 2-connected)n(G), 3 . Let e,f2E(G'). We want a common cycle containing e,f.

Cases 3: e,f both within subdivision. Edge d must exist.

G'

G

Ear decompositions and 2-connected graphs

Definition An ear decomposition of G is a sequence of graphs

$$
P_{0}, P_{1}, \ldots, P_{i}, \ldots, P_{k}
$$

of subgraphs of G such that:
(1) P_{0} is a cycle in G,
(2) For all $i_{,} 1, P_{i}$ is an ear of $P_{0}, P_{1}, \ldots, P_{i-1}$, meaning
(i) P_{i} is a path
(ii) P_{i} is contained in a cycle of $P_{0}, P_{1}, \ldots, P_{i-1}, P_{i}$
(iii) P_{i} is maximal w.r.t. internal vertices having degree $2 \quad$ in $P_{0}, P_{1}, \ldots, P_{i-1}, P_{i}$
(2) $P_{0}, P_{1}, \ldots, P_{i}, \ldots, P_{k}$ decompose G

Ear decompositions and 2-connected graphs

Example Ear decomposition of a graph.

Note that P_{3} cannot come before P_{2} in the order.

[^0]
Ear decompositions and 2-connected graphs

Example Highly connected graphs have ear decompositions. Suppose G has a cycle containing all of its vertices. Then all other edges can be added as ears one at a time, arbitrarily.

Ear decompositions and 2-connected graphs

Example Graphs with connectivity 1 do not have ear decompositions.

The ear decomposition must start on one side of u since there is no cycle containing u. But then there is no way to add u within some path P_{i} that is an ear!

Ear decompositions and 2-connected graphs

...except The 2-vertex graph with 2 or more parallel edges. (Remember, in Chapter 4 there are no loops!)

Set P_{0} equal to a 2-cycle, P_{1}, P_{2}, \ldots handle any remaining edges.

Ear decomposition iff 2-connected (and n(G),3)

Theorem 4.2.8 (Whitney) G has an ear decomposition iff G is 2 -connected. We add the condition $n(G), 3$ to both sides to handle the exceptional case.
Proof. (()
Let $P_{0}, P_{1}, \ldots, P_{\mathrm{k}}$ be an ear decomposition of G.
Assume P_{0} is larger than a 2-cycle (otherwise... exercise).
Cycles are 2-connected.
Get $P_{0}\left[P_{1}\right.$ by expansion...

And then repeated subdivision.

2-connectivity is preserved for both operations. Repeat for P_{2}, \ldots

Ear decomposition iff 2-connected (and n(G),3)

Theorem 4.2.8 (Whitney) Proof. ())
Assume G is 2-connected. By Thm. 4.2.4, G has two edges not both with the same neighbors. And G has a cycle containing these two edges. This cycle must have at least one other edge.

Either way, a cycle with, 3 edges exists in G. Call it P_{0}.

Ear decomposition iff 2-connected (and n(G),3)

Theorem 4.2.8 (Whitney) Proof. ())
Assume G is 2-connected. By Thm. 4.2.4, G has two edges not both with the same neighbors. And G has a cycle containing these two edges. This cycle must have at least one other edge.

Either way, a cycle with, 3 edges exists in G. Call it P_{0}.

Ear decomposition iff 2-connected (and n(G),3)

Theorem 4.2.8 (Whitney) Proof. () continued)
Add all edges between two vertices
of the cycle; call them P_{1}, \ldots, P_{j}.

If there is an edge $u v$ not in P_{0}, Thm. 4.2.4 says there is a cycle C^{\prime} containing $u v$ and an edge on P_{0}.
Delete vertices between the first and last vertices touched within P_{0}.

Repeat combinations of these two steps until G is decomposed.

Material skipped by slides

4.2.10 Theorem. A graph is 2-connected iff it has a closed-ear decomposition, and every cycle in a 2-edge-connected graph is the initial cycle in some such decomposition.
4.2.13 Theorem (Robbins 1939) A graph has a strong orientation iff it is 2-edge-connected.

Plus supporting definitions and examples on closed ears, closedear decompositions, connectivity for digraphs, (directed) ears in digraphs. See pp.164-166.

Local connectivity considers the number of alternative paths between a pair of vertices x, y, and the minimum size structure needed to be deleted to disconnect x from y.

Global connectivity considers the number of alternative paths between any pair of vertices, and the minimum size structure needed to be deleted to disconnect the graph.

We have seen that (for $n(G), 3$) 2-connectedness is equivalent to there existing 2 internally disjoint paths between any pair of vertices. We want to extend this idea:

Locally: compare alternative x, y-paths versus minimum x, y-cuts Globally: find vertex pairs optimizing the local values
4.2.15 Defn. Let $\{x, y\} 2 \mathrm{~V}(G), S \mu \vee(G)-\{x, y\}, F \mu \mathrm{E}(G), \quad X, Y \mu \mathrm{~V}(G)$
(1) S is an x, y-separator (x, y-cut) if G - S has no x, y-path
(1') $\kappa(x, y)=$ minimum size of an x, y-separator
(2) $\lambda(x, y)=$ maximum $\#$ of pairwise internally disjoint x, y-paths
(3) F is an x, y-disconnecting set if $G-F$ has no x, y-path
(3^{\prime}) $\kappa^{\prime}(x, y)=$ minimum size of an x, y-disconnecting set
(4) $\lambda^{\prime}(x, y)=$ maximum \# of pairwise edge-disjoint x, y-paths
(5) An X, Y-path starts in X, ends in Y, otherwise avoids $X[Y$

Examples for local connectivity (1)

4.2.16 Example


```
\(x, y\)-connectivity
\(\lambda(x, y), 4\) (4 int. disj. \(x, y\)-paths)
\(\kappa(x, y) \cdot 4\) (cut \(=\bigcirc\)
```


w,z-connectivity
$\lambda(w, z), 3$ (3 int. disj. w, z-paths) $\kappa(w, z) \cdot 3($ cut $=\bigcirc)$

Examples for local connectivity (2)

4.2.16 Example

\underline{w}, z-connectivity (from prev. slide) $\lambda(w, z), 3$ (3 int. disj. w, z-paths) $\kappa(w, z) \cdot 3($ cut $=\bigcirc)$

$\underline{w, z-e d g e-c o n n e c t i v i t y}$ $\lambda^{\prime}(w, z), 4$
(4 int. edge-disj. w,z-paths)
$\kappa^{\prime}(w, z) \cdot 4$
(disconnecting set touches)

Karl Menger

(http://www.iit.edu/csl/am/about/menger/about.shtml)

1902 born in Vienna
1920-1924 Ph.D. in Mathematics, University of Vienna
[1944-1][1944-6] 1946-1971 Professor of Mathematics, IIT
1985 died in Highland Park near Chicago

In 1932 Menger published Kurventheorie which contains the famous n-Arc Theorem:

Let G be a graph with A and B two disjoint n-tuples of vertices. Then either G contains n pairwise disjoint $A B$-paths (each connecting a point of A and a point of B), or there exists a set of fewer than n vertices that separates A and B.

Other Research Areas: Theory of Curves and Dimension Theory, A General Theory of Length and the Calculus of Variations, Probabilistic Metric Spaces, New Foundations for the Bolyai-Lobachevsky Geometry, and many others

[^1]4.2.17 Theorem (Menger 1927). If x, y are vertices of a graph G and $x y 2 \mathrm{E}(G)$, then $\kappa(x, y)=\lambda(x, y)$.

Proof (assume \mathbf{G} simple)

$\kappa(x, y), \lambda(x, y)$ is easy: an x, y-cut must have, 1 vertex from each of a set of pairwise internally disjoint x, y-paths.
$\kappa(x, y) \cdot \lambda(x, y)$: Set $k=\kappa(x, y)$. We find k pairwise internally disjoint x, y-paths by induction on $n(G)$.
Base case ($n(G)=2$)
$x y \not \approx(G)$ means G is empty, and $\kappa(x, y)=\lambda(x, y)=0$.

Inductive $\operatorname{step}(n(G)>2)$
Let S be a minimum x, y-cut (with $|S|=k$). Consider cases...

Menger's Theorem (2)

Structure of G determines cases.
Fact S does not properly contain $\mathrm{N}(x)$ or $\mathrm{N}(y)$. $\mathrm{N}(x)$ and $\mathrm{N}(y)$ are themselves x, y-cuts.

Case 1. $9 S$ with $S \mu N(x)[\mathrm{N}(y)$.
Define $V_{1}=$ vertices of all x, S-paths
$V_{2}=$ vertices of all S, y-paths
Properties of V_{1}, V_{2} :

$$
\begin{aligned}
& S=V_{1} \AA V_{2} \\
& V_{1} \AA(N(y)-S)= \\
& V_{2} \AA(N(x)-S)=
\end{aligned}
$$

Menger's Theorem (3)

From this decomposition generate new graphs H_{1} and H_{2}.

Properties
$n\left(H_{1}\right), n\left(H_{2}\right)<n(G)$
κ 団 $H_{1}\left(\mathrm{x}, \mathrm{y}^{\prime}\right)=\kappa$ 団 $H_{2}\left(\mathrm{x}^{\prime}, \mathrm{y}\right)=k=|S|$

By induction, k pairwise internally disjoint x, y^{\prime}-paths exist in H_{1}.
Similarly for x^{\prime}, y-paths in H_{2}.
Piece together k pairwise internally disjoint x, y-paths in G.
Contains copyrighted material from Introduction to Graph Theory by Doug West, $2^{\text {nd }}$ Ed. Not for distribution beyond IIT's Math 454/553.

Menger's Theorem (4)

Case 2. All minimum x, y-cuts S satisfy $S \mu \mathrm{~N}(x)[\mathrm{N}(y)$.

Case 2A. There exists some vertex $v \notin\{x\}[\mathrm{N}(x)[\mathrm{N}(y)[\{y\}$. Then v is in no minimum x, y-cut, and $\kappa(G-v)=k$. Induct on $G-v$ to find $\kappa_{G-v}(x, y)=\lambda_{G-v}(x, y)=k$.

Case 2B. There exists some vertex $u 2 \mathrm{~N}(x) \backslash \mathrm{N}(y)$. Then u must be in every minimum x, y-cut in order to separate x from y.
Therefore $\kappa(G-u)=k-1$.
Induct on $G-u$ to find $\kappa_{G-u}(x, y)=\lambda_{G-u}(x, y)=k-1$.
Observe that the path x, u, y exists in G but not in $G-u$.
Contains copyrighted material from Introduction to Graph Theory by Doug West, $2^{\text {nd }}$ Ed. Not for distribution beyond IIT's Math 454/553.

Menger's Theorem (5)

Case 2C. All minimum x, y-cuts S satisfy $S \mu \mathrm{~N}(x)[\mathrm{N}(y)$, and $\mathrm{N}(x), \mathrm{N}(y)$ partition $\mathrm{V}(G)-\{x, y\}$.

The set of x, y-paths are in natural bijection with the set of edges between $\mathrm{N}(x)$ and $\mathrm{N}(y)$.
Therefore S is a vertex cover of $\mathrm{G}[\mathrm{N}(x)[\mathrm{N}(y)]$.
König-Egerváry gives a matching of size $|S|=k$.
The matching edges correspond to pairwise internally disjoint x, y-paths, and so $\kappa(x, y)=\lambda(x, y)=k$.

[^0]: Contains copyrighted material from Introduction to Graph Theory by Doug West, 2 ${ }^{\text {nd }}$ Ed. Not for distribution beyond IIT's Math 454/553.

[^1]: Contains copyrighted material from Introduction to Graph Theory by Doug West, $2^{\text {nd }}$ Ed. Not for distribution beyond IIT's Math 454/553.

