Theorem 20.1

\[x + \langle p(x) \rangle \] is a zero of \(p(x) \)
in \(F[x] / \langle p(x) \rangle \) when \(p(x) \) is
irreducible.

Theorem 20.2

There exists a splitting field \(E \)
for \(f(x) \) over \(F \) (By induction on 20.1)

Theorem 20.3

\[p(x) \in F[x] \] irreducible of degree \(n \), and
\[p(a) = 0 \] for \(a \in \) extension \(E \) of \(F \)
\[\Rightarrow \quad F(a) \cong F(x) / \langle p(x) \rangle \]

Application 1 \(\mathbb{Q}(i) \cong \mathbb{Q}[x] / \langle x^2 + 1 \rangle \)

Application 2 \(F(a) = \{ \mathbb{Q}^{-1} (c_{n-1} x^{n-1} + \cdots + c_1 x + c_0 + \langle p(x) \rangle) \} \)
\[= \{ c_{n-1} a^{n-1} + \cdots + c_1 a + c_0 \mid c_i \in F \} \]
is a vector space over \(F \).

Corollary \(a \in E \supseteq F \), \(b \in E' \supseteq F \),
\[p(a) = 0 = p(b) \]
\[\Rightarrow \quad F(a) \cong F(b) \].
Corollary to Theorem 20.4: Splitting fields are unique up to isomorphism.

\[f(x) = p(x)q(x) \in F[x], \quad p(x) \text{ irreducible} \]

\[p(a) = 0 = p(b) ; \quad a \in E \cong F, \quad b \in E' \cong F \]

\[p(x) = p_1(x)p_2(x) \text{ over } F(a) \]

\[p_1(x) \text{ irreducible over } F(a) \]

\[p_1(a') = 0 = \epsilon(p_1(x))(b') \]

Extend \(\epsilon : F(a,a') \to F(b,b') \)

by setting \(\epsilon(a') = b' \).
Theorem 20.5 \(\exists a \in E \ni F \) such that
\[(x-a)^2 \mid f(x) \text{ over } E \text{ iff } \deg\left(\gcd_F(f(x), f'(x))\right) > 0.\]
(\(\text{gcd over } F \text{ means "largest degree polynomial dividing both over } F." \))

Example
\[f(x) = (x^3+1)^2 \quad f'(x) = 2(x^3+1)2x\]
\[\gcd_F(f(x), f'(x)) = x^2 + 1 \quad (\text{up to a unit})\]
Thus \(f(x) \) has a multiple zero in some Extension field \(E \) of \(F \). (Illustrates converse.)
Note that \(f \) reduces over \(F \).

Theorem 20.6 \(\overline{\text{f(x) irreducible over } F[x]} \).
\[\text{char } F = 0 \Rightarrow \text{ no multiple zeros.}\]
\[\text{char } F = p \Rightarrow \text{ multiple zeros if } f(x) = g(x^p) \quad \text{for some } g(x) \in F[x].\]

\[\frac{\text{multiple zeros}}{\text{irred}} \Rightarrow \deg(\gcd_F(f(x), f'(x))) > 0\]
\[\Rightarrow f'(x) = 0\]
\[\Rightarrow\begin{cases}
 f(x) = a_0, \quad \text{char } F = 0 \quad \forall x \\
 f(x) = a_{pm}x^{p^m} + a_{p(m-1)}x^{p^{(m-1)}} + \cdots + a_p x^p + a_0, \\
 \text{char } F = p.
\end{cases}\]
\[\frac{\left(\frac{d}{dx}\left(a_{pj}x^{p^j}\right)\right)}{p!} = p!a_{pj}x^{p^j-1} = 0 \quad \text{in characteristic } p\]
Perfect fields

Fields \(F \) with

(i) \(\text{char } F = 0 \)

(ii) \(\text{char } F = p \) \(\iff \ F = F_p = \{ a^p | a \in F \} \)

Theorem 20.7 Finite fields are perfect

\(\varphi : F \rightarrow F_p \)

\[\varphi(a) = a^p \]

\[\varphi(a + b) = (a + b)^p = a^p + \left(\sum_{i=1}^{p-1} \binom{p}{i} a^i b^{p-i} \right) + b^p = a^p + b^p \]

\(\ker \varphi = \{ a \in F | a^p = 0 \} = \{ 0 \} \)

\(\Rightarrow \) \(\varphi \) is 1-1.

\(\Rightarrow \) \(\varphi \) is onto since \(|F| < \infty \).

Why perfect fields?

Theorem 20.8 Over perfect fields, irreducible polynomials have no multiple zeros.

\(\text{Char } F = 0 \) \(\iff \) by Theorem 20.6

\(\text{Char } F = p \) \(\iff \) multiple zeros \(\Rightarrow \) \(f(x) = g(x^p) \)

\[= a_n x^{p^n} + \cdots + a_1 x^p + a_0 \quad (\text{perfect}) \]

\[= b_n x^{p^n} + \cdots + b_1 x^p + b_0 \quad (\text{char } p) \]

\[\Rightarrow \]
Multiplicity of zeros of irreducible \(f(x) \) over \(F \)

- **Char \(F = 0 \)**: Each zero has multiplicity 1.
- **Char \(F = \mathbb{F} \)**
 - If \(|F| < \infty \)
 - Each zero has multiplicity 1.
 - If \(|F| = \infty \) and \(F^p = F \)
 - Each zero has multiplicity 1.
 - If \(|F| = \infty \) and \(F^p \subset F \)
 - \(\exists r \in \mathbb{Z}^+ \) such that each zero has multiplicity \(r \).

Theorem 20.9

\(f(x) \) irreducible over \(F \),
\(E \) a splitting field of \(f(x) \) over \(F \).

Then all zeros of \(f(x) \) in \(E \) has the same multiplicity.

Proof sketch

Let \(a, b \in E \) with \(f(a) = 0 = f(b) \).

- \(\varphi: E \rightarrow E \) automorphism
- \(\varphi: F \rightarrow F \) identity
- \(\varphi(a) = b \)

So

\[f(x) = \varphi(f(x)) \]

\[(x-a)^r g(x) \]

\[(x-b)^r \varphi(g(x)) \]

Picture by Thm. 20.4
Corollary. \(f(x) \) irreducible over \(F \), \(E \) a splitting field of \(f(x) \) over \(F \). Then

\[
f(x) = a \prod_{\substack{w \in E \\ w \in \mathbb{F}}} (x-a_w)^n
\]

\(E \subset \mathbb{Z}^+ \) with

If \(F \) is perfect, then \(n = 1 \).

Remark. Non-perfect fields have unusual structure and we do not encounter them frequently.

\[
F = \mathbb{Z}_p(t) = \left\{ \frac{h(t)}{k(t)} \mid h(t), k(t) \in \mathbb{Z}_p[t], k(t) \neq 0 \right\}
\]

\(x^{p-1} \) is irreducible over \(F \)

\[
\frac{d}{dx}(x^{p-1}) = 0 \Rightarrow \text{multiple root}.
\]