Encoding/Decoding Framework

\[0 < k \leq n \]

Message space \(\mathcal{E}_0,13^k = \{ b_1, \ldots, b_k \mid b_i \in \begin{array}{c} \mathbb{Z}_2 \end{array} \} \)

Codeword space \(\mathcal{E}_0,13^n = \{ c_1, \ldots, c_n \mid c_i \in \begin{array}{c} \mathbb{Z}_2 \end{array} \} \)

- Original message: \(b_1, b_2, \ldots, b_k \)
- Decoded message: \(b'_1, b'_2, \ldots, b'_k \)

Encoder: \(f : \mathcal{E}_0,13^k \to \mathcal{E}_0,13^n \) is a 1-1 function that typically adds **redundancy**

Noise: a model assumption is made, such as

(i) at most one error, \(\varepsilon_1, \ldots, \varepsilon_n = 0 \cdots 010 \cdots 0 \)
(ii) small independent chance of error in each position.

Decoder: a well-defined function

\(g : \mathcal{E}_0,13^n \to \mathcal{E}_0,13^k \) U "resend" U "unrecoverable failure"
Example a repetition code.

Set $k = 1$, $n = 3$.

\mathbb{Z}_2, \mathbb{Z}_2^3.

$f(0) = 000$, $f(1) = 111$.

decoding function depends on noise assumption.

assumption 1 ≤ 1 error.

$g(000) = g(100) = g(010) = g(001) = 0$
$g(111) = g(110) = g(101) = g(011) = 1$

assumption 2 ≤ 2 errors

$g(000) = 0$ otherwise, $g(b_1b_2b_3) = "resend"$
$g(111) = 1$

assumption 3 probability of error in any bit is independent with probability .05.

Using g from assumption 1, what is the probability of successful decoding?
Linear Transformation encoders

Any matrix over a field provides an encoding function.

\[M: \mathbb{F}_2, 13^k \rightarrow \mathbb{F}_2, 13^n \]

\[b M = c \]

where \(M \) is a \(k \times n \) matrix over \(\mathbb{Z}_2 \).

\[G: \mathbb{F}_2, 13^4 \rightarrow \mathbb{F}_2, 13^7 \]

\[G = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 \\
d_1 & d_2 & d_3 & d_4 & p_1 & p_2 & p_3
\end{bmatrix} \]

Idea: "data" bits are \(d_1, d_2, d_3, d_4 \)

"redundancy" parity check bits are \(p_1, p_2, p_3 \)

\[b = b_1 b_2 b_3 b_4 \]

\[bG = c_1 g_1 \ldots c_7 \]

<table>
<thead>
<tr>
<th>(b)</th>
<th>(bG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>0100</td>
<td>0100</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>1001</td>
<td>1001</td>
</tr>
<tr>
<td>1010</td>
<td>1010</td>
</tr>
</tbody>
</table>
Parity bit p_i is assigned to the data bits in its circle, so that sum = 0.

Every data bit is covered by
1. At least 2 parity bits
2. A unique subset of parity bits.

Up to 1 error can be corrected.
Up to 2 errors can be detected.
Hypercube viewpoint

$\mathbb{E}_0,13^4 \xrightarrow{f} \mathbb{E}_0,13^7$

0 errors codeword

1 error

Radius 1 Hamming ball in $\mathbb{E}_0,13^7$ with center 0001011

message space

codeword space

\[
\{0001011, 1001011, 0101011, 0011011, 0000011, 0001111, 0001011, 0001001, 0001010\}
\]
Definition (Linear Code)

An \((n,k)\) linear code over a finite field \(F\) is a \(k\)-dimensional subspace \(V\) of the vector space \(F^n = F \oplus F \oplus \cdots \oplus F\) (\(n\) copies) over \(F\). Elements of \(V\) are called codewords. When \(F = \mathbb{Z}_2\), \(V\) is a binary code.

\((n,k)\) linear code \(\iff\) generator matrix \(G : F^k \rightarrow F^n\) via basis of \(V\)

\[
G = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & \| \\
0 & 0 & 1 & 0 & 1 & 1 & \| \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
I_{k \times n} \\
A_{k \times (n-k)}
\end{bmatrix}
\]

Generator matrix of a \((7,4)\) linear code.
Parity-Check Matrix Decoding (PCMD)

\[G = [I_r | A_{r \times n-r}] \iff H = \begin{bmatrix} -A_{r \times n-r} \\ I_{n-r} \end{bmatrix} \]

generator matrix

parity-check matrix

Example

\[G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ \hline \\ d_1 & d_2 & d_3 & p_1 & p_2 & p_3 \end{bmatrix} \]

\[H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

PCMD algorithm

1. received word = \(w \). Find \(wH \).
2. \(wH = 0 \) \(\Rightarrow \) decode as \(w \) itself.
3. \(wH = i^{th} \) row of \(H \) \(\Rightarrow \) decode as \(w + e_i \) (and no other)
4. Otherwise \(\geq 2 \) errors. Do not decode.

\[wH = [q_1, q_2, \ldots, q_{n-r}] \]

\(q_i = 0 \) iff \(i^{th} \) parity relation holds for \(w \).

Exercise Decode 101011, 111010, 110000
\[\begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix} H = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} = 5^{th} \text{ row of } H, \text{ so decode as } 101001. \]
\[\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 \end{bmatrix} H = \begin{bmatrix} 1 & 1 \end{bmatrix} = 1^{st} \text{ row of } H, \text{ so decode as } 011010 \]
\[\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} H = \begin{bmatrix} 0 & 1 \end{bmatrix} \text{ not a row of } H. \text{ 2 \text{ errors, do not decode.} } \]

Lemma (Orthogonality Relation)

Let \(C \) be an \((n, k)\) linear code over \(F \) with generator matrix \(G \) and parity-check matrix \(H \). Then, for any \(v \in F^n \),

\[vH = 0 \quad \text{iff} \quad v \in C. \]

Proof

\(H \) is \(n \times (n-k) \), \(H \) contains \(I_{n-k} \) and so ranks \((H) + \dim(\ker H) = n \)

\[(n-k) + k = n. \]

\(\dim C = k \), so we just show \(C \subseteq \ker H \).

Let \(v \in C \), and let \(m \) satisfy \(v = mg \).

Then \(vH = mGH \)

\[= m \begin{bmatrix} I_k \mid A \end{bmatrix} \begin{bmatrix} -A \\ I_{n-k} \end{bmatrix} \]

\[= m(I_k(-A) + A I_{n-k}) = m \cdot 0 = 0. \]

\(\square \)
Exercise. Given \(r \geq 2 \) parity bits, what is the maximum number of data bits
\[
\mathcal{C} = \{ d_1, \ldots, d_k, p_1, \ldots, p_r \}
\]
in a \((r + \ell, k)\) linear code for which 1 error can be corrected?
(Hint: Look at rows of \(H \).)

Theorem 31.3 (Parity-check Matrix Decoding)

PCMD will correct any single error iff rows of \(H \) are nonzero and no two rows are dependent.

Proof (binary case) independent rows \(\iff \) distinct rows

(\(\Leftarrow \)) Assume rows of \(H \) are nonzero and distinct.
Assume \(w \) is transmitted but received as \(w + e_i \).
\[
(w + e_i) H = wH + e_i H = e_i H \quad \text{(Orthog. Lemma)}
\]
\[= i^{th} \text{ row of } H.\]
The \(i^{th} \) row is distinct, and so the error is identified.

(\(\Rightarrow \)) No row of \(H \) can be the zero row. Otherwise an error-free code word \(w \) yields \(wH = \mathbf{0} \), and an error is reported in the position of the \(0 \) row of \(H \).
No two rows \(i \neq j \) of \(H \) are the same. Otherwise if \(w \) is a code word received as \(w + e_i \),
\[
(w + e_i) H = wH + e_i H = i^{th} \text{ row of } H
\]
\[= j^{th} \text{ row of } H.\]
The decoding algorithm reports 2 errors and does not decode.\(\square \)