Theorem 5.2 Disjoint cycles Commute
Proof sketch:
Let $\alpha=\left(a_{1} a_{2} \cdots a_{l}\right)$ be disjoint
$\beta=\left(\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{m}\end{array}\right)$ cycles in S_{n}
Let $C=\{1, \ldots, n\}-\left(\left\{a_{1}, \ldots, a_{l}\right\} \cup\left\{b_{1}, \ldots, b_{m}\right\}\right)$
We check that $\alpha \beta(x)=\beta \alpha(x)$ for all $x \in \quad\{1, \ldots, n\}$
Case $1 x \in\left\{a_{1}, \ldots, a_{\ell}\right\}$
Thus $x=a_{i}$ for some $1 \leq i \leq l$.
Then $\alpha \beta\left(a_{i}\right)=\alpha\left(a_{i}\right)=a(i \bmod l)+1$

$$
\begin{aligned}
& =\beta\left(a_{(i \bmod l)+1}\right) \\
& =\beta \alpha\left(a_{i}\right) .
\end{aligned}
$$

Case 2 $x \in\left\{b_{i}, \ldots, b_{m}\right\}$ by switching roles of α and β in Case 1.
Case $3 \quad x \in C$.
Then $\alpha \beta(x)=\alpha(x)$ since $x \notin\left\{b_{1}, \ldots, b_{m}\right\}$

$$
\begin{aligned}
& =x \quad \text { since } x \notin\left\{a_{1}, \ldots, a_{l}\right\} \\
& =\beta(x)=\beta(\alpha(x)) \\
& =\beta \alpha(x)
\end{aligned}
$$

All cases $x \in\{1, \ldots, n\}$ are covered.

Theorem 5.3 The order $|\alpha \beta|$ of disjoint cycles α, β in S_{N} is the least common multiple of the lengths of α and β.
Proof: Let a have length m, and β length n.
Claim $|\alpha|=m$ and $|\beta|=n$ (Exercise!)
Set $k=\operatorname{lcm}(m, n)$.
Set $t=|\alpha \beta|$.
Claim 2 t divides k

$$
\begin{aligned}
(\alpha \beta)^{k} & =\alpha^{k} \beta^{k} & & \text { since } \alpha \beta=\beta \alpha(\text { Th m } 5, \alpha) \\
& =\varepsilon \cdot \varepsilon & & \text { since } m / k, n \mid k
\end{aligned}
$$

Therefore $t \mid k$ by Theorem 4.1. ($\operatorname{Cos} 2)$.
Claim 3 divides t disjoint cycles commute

$$
(\alpha \beta)^{t}=\alpha^{t} \beta^{t}=\varepsilon \text {, since }|\alpha \beta|=t
$$

Thus $\quad \alpha^{t}=\beta^{-t}$.
But α, β are disjoint, so the only possibility is $\alpha^{t}=\beta^{-t}=\varepsilon$.
Therefore $|\alpha| \mid t$ and $|B| \mid t$ by The 4.1 , in other wads, m / t and n / t, so k divides $\quad|\alpha \beta|=t$.
By Claims 2 and $3, \quad|\alpha \beta|=\operatorname{lcm}(|\alpha|,|\beta|)$.
Remark we extend to ≥ 3 cycles by induction and the propentrs

$$
\operatorname{lcm}(l, m, n)=\operatorname{lcm}(\ell, \operatorname{lcm}(m, n))
$$

Theorem 5,5 Aluscys even a always odd A permutation $\alpha \in S_{n}$ is either even or odd. This means whenever α is written as a product of 2 -cycles

$$
\alpha=\beta_{1} \beta_{2} \cdots \beta_{r},
$$

that α even $\Leftrightarrow r$ is even

$$
\alpha \text { odd } \Leftrightarrow r \text { is odd. }
$$

Proof Suppose β_{i} 's $+\gamma_{j}$'s ane 2 -cycles
with

$$
\alpha=\beta_{1} \beta_{2} \cdots \beta_{r}=\gamma_{1} \gamma_{2} \cdots \gamma_{s} .
$$

Then $\varepsilon=\beta_{1} \beta_{2} \cdots \beta_{r}\left(\gamma_{1} \gamma_{2} \ldots \gamma_{s}\right)^{-1}$

$$
=\beta_{1} \cdots \beta_{r} \gamma_{s}^{-1} \cdots \gamma_{1}^{-1}
$$

where the γ_{j}^{-1} are 2 cycles.
By the lemma, $r+s$ is even. Therefore r and s have the same parity.
By transitivity, all ways of writing α as the product of 2-aycles have the same parity. II

