Theorem 6.1 Cayley’s Theorem

Every group is isomorphic to a group of permutations.

Proof

Let G be any group.

We need to construct a group \overline{G} of permutations, with an isomorphism $\varphi : G \to \overline{G}$.

Q. Permutations on what? A. on G.

Idea

$$
g \leftrightarrow T_g
$$

Element of G \hspace{1cm} Permutation on G

Definition For each $g \in G$, define

$$
T_g : G \to G \hspace{1cm} \text{by}
$$

$$
T_g(x) = g \cdot x \hspace{1cm} \text{for all } x \in G.
$$

Fact 1 T_g is a permutation on G (Ex. 21)

Fact 2 Set $\overline{G} = \{ T_g | g \in G \}$.

Then \overline{G} is a group under function composition.
Fact 2 Proof

We claim \(T_g \circ T_h = T_{gh} \), so that function composition is a closed binary operation.

\[
T_g \circ T_h (x) = T_g (h \cdot x) = gh \cdot x = (gh)x = T_{gh} (x).
\]

\(gh \in G \Rightarrow T_{gh} \in G \), so it's closed.

associativity Yes, b/c function composition.

identity \(T_e \circ T_g (x) = T_g (x) = T_{ge} (x) = T_g (x) = T_g T_e (x) \); so

\(T_e \in G \) is the identity in \(G \).

inverses \(T_g \circ T_{g^{-1}} (x) = T_{gg^{-1}} (x) = T_e (x) \)

\[
= T_{g^{-1}g} (x) = T_{g^{-1}} T_g (x),
\]

so \((T_g)^{-1} = T_{g^{-1}} \) is the inverse of \(T_g \).

Isomorphism Define \(\Phi : G \to \overline{G} \)

by \(\Phi (g) = T_g \).

Fact 3 \(\Phi \) is a bijection (exercise)

Fact 4 \(\Phi \) is operation preserving

\[\Phi (xy) = T_{xy} = T_x T_y = \Phi (x) \Phi (y) \] \(\square \)