Question. When are two groups the “same”?

Definition. An isomorphism ϕ from a group G to a group \overline{G} is a bijection from G to \overline{G} that preserves the operation. That is,

$$\phi(ab) = \phi(a)\phi(b) \quad \text{for all } a, b \text{ in } G.$$

If there is an isomorphism from G onto \overline{G}, we say that G and \overline{G} are isomorphic and write $G \equiv \overline{G}$.

(1) Suppose we were to write down the Cayley tables of two isomorphic groups G and \overline{G}. How can an isomorphism from G to \overline{G} be described in terms of the Cayley tables?

For problems (2)-(4) exhaustively describe the isomorphisms for these small groups.

(2) Find an isomorphism from $\{−1, 1\}$ under multiplication to \mathbb{Z}_2.

(3) Find two distinct isomorphisms from the cyclic subgroup of rotations in D_3 to \mathbb{Z}_3.

(4) Let G be the group $\{(0,0), (1,0), (0,1), (1,1)\}$ under coordinate-wise addition mod 2. Find an isomorphism between G and the group generated by the 180 degree rotations of the tetrahedron. Is this isomorphism unique?

General Procedure for Proving Isomorphism

Step 1. Define the candidate mapping ϕ from G to \overline{G}.

Step 2. Prove that ϕ is one-to-one.

Step 3. Prove that ϕ is onto.

Step 2. Prove that for all $a, b \in G$, $\phi(ab) = \phi(a)\phi(b)$.
Definition. An automorphism is an isomorphism from a group to itself.

(5) Prove that $\phi(x) = \sqrt{x}$ is an automorphism on \mathbb{R}^+, the group of positive real numbers under multiplication.

(6) Prove that $U(8)$ is not isomorphic to $U(10)$.

(7) Prove that S_4 is not isomorphic to D_{12}.