Definition. The order of a group G, denoted by $|G|$, is the number of elements in G. Either $|G| = \infty$, or $|G|$ is a positive integer; a finite group is sometimes indicated by $|G| < \infty$.

Definition. The order of an element g of a group G, denoted $|g|$, is the smallest positive integer n such that $g^n = e$ ($n \cdot g = 0$ in additive notation). If no such integer exists, we say g has infinite order and write $|g| = \infty$.

(1) Classify the elements of the groups $U(8)$ and $U(10)$ according to their orders (see Group Activity 2A Problem (6)).

(2) Classify the elements of the group \mathbb{R}^* under multiplication according to their orders.

(3) Classify the elements of the group \mathbb{Z}_{12} under addition mod n according to their orders.

(4) Classify the elements of the group \mathbb{Z} under addition according to their orders.

Definition. If a subset H of a group G is itself a group under the operation of G, we say that H is a subgroup of G.

If H is a subset of some G that we already know is a group, we have a head start on proving that H itself is a group.

What we know already: (i) the candidate binary operation on H is the one on G, (ii) the candidate binary operation on H is associative by inheritance.

What we must show about H: (i) the candidate binary operation is closed on H, (ii) H has an identity (the identity of G), and (iii) H contains inverses of all of its elements.

(Continued on reverse)
(5) List 5 subgroups of the nonzero complex numbers \mathbb{C}^* under multiplication.

(6) By inspecting the Cayley tables of $U(8)$ and $U(10)$, list all of the subgroups of $U(8)$ and $U(10)$.

$U(8)$:

$U(10)$:

(7) By inspecting the Cayley table of D_3, list all of its subgroups. Visualize the result of restricting to certain rows and columns. (Hint: there are 6 subgroups.)

$$
\begin{array}{c|cccc}
D_3 & R_0 & R_{120} & R_{240} & F_1 & F_2 & F_3 \\
R_0 & R_0 & R_{120} & R_{240} & F_1 & F_2 & F_3 \\
R_{120} & R_{120} & R_0 & R_{240} & F_3 & F_1 & F_2 \\
R_{240} & R_{240} & R_{120} & R_0 & F_2 & F_3 & F_1 \\
F_1 & F_1 & F_2 & F_3 & R_0 & R_{120} & R_{240} \\
F_2 & F_2 & F_3 & F_1 & R_{240} & R_0 & R_{120} \\
F_3 & F_3 & F_1 & F_2 & R_{120} & R_{240} & R_0 \\
\end{array}
$$

Break. **Theorem 3.1 One-Step Subgroup Test.** Let G be a group and H a nonempty subset of G. If ab^{-1} is in H whenever a and b are in H, then H is a subgroup of G. (In additive notation, if $a - b$ is in H whenever a and b are in H, then H is a subgroup of G.)

Usage. 1. Identify the defining condition for H. 2. Prove the identity e of G fulfills this condition. 3. Assume some a, b in G fulfill the condition. 4. Prove that for this a, b that ab^{-1} fulfills the condition.

(8) Use the One-step subgroup test to prove that the even integers are a subgroup of \mathbb{Z} under addition.

(9) Use the One-step subgroup test to prove that the subset H of an Abelian group G defined by

$$
H = \{g \in G : |g| \leq 2\},
$$

that is, the subset of elements with order at most 2, is a subgroup of G.