Group Members:

Isomorphisms Versus Homomorphisms

Let $\phi: G \to \overline{G}$ be a function, where G and \overline{G} are groups.

Property 1. ϕ is a bijection.

Property 2. ϕ is operation-preserving; i.e., $\forall x, y \in G, \phi(xy) = \phi(x)\phi(y)$.

Definition. ϕ is a group isomorphism if it has Properties 1&2, and we say $G \approx \overline{G}$.

Definition. ϕ is a group homomorphism if it has Property 2.

Definition. The *kernel* of a homomorphism $\phi: G \to \overline{G}$ is the set

$$\operatorname{Ker}\phi = \phi^{-1}(\overline{e}) = \{ x \in G \, | \, \phi(x) = \overline{e} \},\$$

where \overline{e} is the identity element of \overline{G} . The kernel is the set of elements of G that map to the identity element of \overline{G} . This is the *preimage* of \overline{e} under ϕ .

(1) Define $\phi : \mathbb{Z} \to \mathbb{Z}_2$ by

$$\phi(x) = \begin{cases} 0 & \text{if } x \text{ is even,} \\ 1 & \text{if } x \text{ is odd.} \end{cases}$$

(a) Does ϕ have Property 1? If so prove it.

(c) What is the kernel of ϕ ?

(b) Does ϕ have Property 2? If so prove it. (d) What are $\phi^{-1}(1)$ and $\phi^{-1}(1)$?

(2) Define $G = \{ax + b \mid a, b \in \mathbb{R}\}$ to be the set of degree 0 and 1 polynomials in the variable x over the real numbers. Define the function $\phi : G \to G$ by

$$\phi(ax+b) = \frac{d}{dx}(ax+b).$$

(a) Does ϕ have Property 1? If so prove it. (b) Does ϕ have Property 2? If so prove it. (c) What is the kernel of ϕ ? (d) What are $\phi^{-1}(0), \phi^{-1}(5), \text{ and } \phi^{-1}(x)$? (3) Let $n \in \mathbb{Z}^+$. Recall that \mathbb{R}^n can be viewed as the set of $n \times n$ column vectors over the real numbers. Let M be an $n \times n$ matrix with real coefficients, and define $\phi : \mathbb{R}^n \to \mathbb{R}^n$ to be the linear transformation

$$\phi(\mathbf{x}) = M\mathbf{x}$$

Use what you know about matrices to answer the following.

(a) Under what condition does ϕ have Property 1?

(b) Does ϕ have Property 2? If so prove it.

(c) What is the matrix theory/linear algebra name for the kernel of ϕ ?

(d) When does the equation $M\mathbf{x} = \mathbf{b}$ have exactly one solution? More than one solution? No solutions? Try to use group theory language.

Theorem 10.1: Properties of Homomorphisms

Let $\phi: G \to \overline{G}$ be a group homomorphism. Let G have identity e and \overline{G} have identity \overline{e} . Then **1.** $\phi(e) = \overline{e}$.

2. $\phi(g^n) = (\phi(g))^n$ for all $n \in \mathbb{Z}$.

3. If |g| is finite, then $|\phi(g)|$ divides |g|.

4. Ker ϕ is a subgroup of *G*.

5. $\phi(a) = \phi(b)$ iff $a \text{Ker}\phi = b \text{Ker}\phi$.

6. If $\phi(g) = g'$, then $\phi^{-1}(g') = \{x \in G \mid \phi(x) = g'\} = g \operatorname{Ker} \phi$.

Theorem 10.2: Properties of Subgroups Under Homomorphisms

Let $\phi : G \to \overline{G}$ be a group homomorphism, and let $H \leq G$. Let G have identity e and \overline{G} have identity \overline{e} . Then

1. $\phi(H) = \{\phi(h) \mid h \in H\}$ is a subgroup of \overline{G} .

2. If H is cyclic, then $\phi(H)$ is cyclic.

3. If H is Abelian, then $\phi(H)$ is Abelian.

4. If $H \triangleleft G$, then $\phi(H) \triangleleft \overline{G}$.

5 If $|\text{Ker}\phi| = n$, then ϕ is an *n*-to-1 mapping from G onto $\phi(G)$.

6. If |H| = n, then $|\phi(H)|$ divides n.

7. If $\overline{K} \leq \overline{G}$, then $\phi^{-1}(\overline{K}) = \{k \in G \mid \phi(k) \in \overline{K}\} \leq G$.

8. If $\overline{K} \triangleleft \overline{G}$, then $\phi^{-1}(\overline{K}) = \{k \in G \mid \phi(k) \in \overline{K}\} \triangleleft G$.

9. If ϕ is onto and Ker $\phi = \{e\}$, then ϕ is an isomorphism from G to \overline{G} .

Kernels are Normal: Set $K = \{\overline{e}\}$ in Property 8 to see that $\operatorname{Ker} \phi = \phi^{-1}(\overline{e}) \triangleleft G$.

Theorem 10.3: First Isomorphism Theorem.

Let $\phi : G \to \overline{G}$ be a group homomorphism. Then $G/\operatorname{Ker}\phi \approx \phi(G)$, under the isomorphism $g\operatorname{Ker}phi \to \phi(g)$.