Motivation

Just as definite integrals can be solved using antiderivatives by the Fundamental Theorem of Calculus, we also want a method of solving finite summations of the form \(\sum_{i=1}^{n} f(i) \). The summations appear frequently in mathematics: in finite difference methods used to solve differential equations numerically on a computer, in combinatorial identities that count discrete objects by grouping them according to type, and in countless theorems for which a closed form of a summation is useful.

Finite Difference Formula

In calculus we have the familiar derivative formula
\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}.
\]
For discrete applications, we may not be able to let \(h \) go to 0. For example, \(f \) might be defined only for integer \(x \), or perhaps we are implementing a numerical procedure which samples \(f \) only at values of \(x \) with spacing like the integers. In this case we may alternatively set \(h = 1 \) and define the finite (forward) difference
\[
\Delta f(x) = f(x + 1) - f(x).
\]
If we take, for integer \(m \), the definition of the falling power of \(x \) to be
\[
x^m = \begin{cases}
 x(x - 1) \cdots (x - m + 1) & \text{if } m > 0, \\
 1 & \text{if } m = 0, \\
 \frac{1}{(x+1) \cdots (x+(-m))} & \text{if } m < 0;
\end{cases}
\]
then it is a straightforward exercise in algebra to derive the following finite difference analogy to the power rule \((d/dx)x^m = mx^{m-1} \):
\[
\Delta x^m = \begin{cases}
 mx^{m-1} & \text{if } m \neq 0, \\
 0 & \text{if } m = 0.
\end{cases} \tag{1}
\]

A Word on Summation Notation

We will be using two forms of summation notation in what follows. First, is the notation we are accustomed to, namely
\[
\sum_{k=1}^{n} g(k) = g(1) + g(2) + \cdots + g(n-1) + g(n).
\]
Here the index \(k \) ranges from 1 up to \(n \), hitting every integer value in between and both endpoints 1 and \(n \).

The second notation is a formal notation for defining the analogy to a definite integral, namely the definite sum
\[
\sum_{a}^{b} g(x) \delta x.
\]
We don’t know this now before reading the rest of these notes, but the relationship between these two sums is
\[
\sum_{1}^{n} g(x) \delta x = \sum_{x=1}^{n-1} g(x) = g(1) + g(2) + \cdots + g(n - 1).
\]
In other words, the top index \(n \) is missing when we transfer from the second formal notation to the usual summation notation we already know about.

Antiderivatives and Antidifferences

In calculus we define antiderivatives by
\[
g(x) = f'(x) \quad \text{if and only if} \quad \int g(x) \, dx = f(x) + C,
\]

Project Sponsor: Robert Ellis, Asst. Prof. of Applied Mathematics, E1 105C, rellis@math.iit.edu
where C is any constant. In other words, $f(x) + C$ is the class of functions whose derivatives are all $g(x)$. By analogy, we formally define the indefinite sum $\sum g(x)\delta x$ by

$$g(x) = \Delta f(x) \quad \text{if and only if} \quad \sum g(x)\delta x = f(x) + C;$$

where C could be a constant, or since the finite difference is defined with $h = 1$ spacing, C could be any periodic function with $C(x) = C(x + 1)$ for all $x \in \mathbb{R}$, such as $\sin 2\pi x$. The formal sum $\sum g(x)\delta x$ is still vague, but we can make it more concrete by making an analogy with definite integrals.

Definite Integrals and Definite Sums

In calculus we define definite integrals by

$$\int_a^b g(x) \, dx = f(x)|_a^b = f(b) - f(a),$$

whenever $f(x)$ is an antiderivative of $g(x)$. Now suppose $f(x)$ is an antidifference of $g(x)$, and let us consider what we might get for finite calculus. First we need notation. Let us decide by fiat that the notation we want is $\sum_a^b g(x)\delta x$, and we want to define this sum so that, analogous to definite integrals,

$$\sum_a^b g(x)\delta x = f(b) - f(a).$$

When $b = a$, we would like to get $\sum_a^a g(x)\delta x = f(a) - f(a) = 0$, analogously to $\int_a^a g(x) \, dx = 0$. When $b = a + 1$, we would like to get $\sum_a^{a+1} g(x)\delta x = f(a + 1) - f(a)$, which by the definition of $g(x) = \Delta f(x)$, gives

$$\sum_a^{a+1} g(x)\delta x = f(a + 1) - f(a) = g(a).$$

Now say that $b = a + k$, where m is some positive integer. Then we have

$$\sum_a^{a+m} g(x)\delta x = f(a + m) - f(a)$$

$$= [f(a + m) - f(a + m - 1)] + [f(a + m - 1) - f(a + m - 2)] + \cdots + [f(a + 2) - f(a + 1)] + [f(a + 1) - f(a)]$$

$$= g(a + m - 1) + g(a + m - 2) + \cdots + g(a + 1) + g(a).$$

The middle line is just a telescoping sum that we insert to make things work out. We see that this is exactly what we need to define the definite sum as a concrete object.

$$\sum_a^{b} g(x)\delta x : = \sum_{x=a}^{b-1} g(x) = g(a) + g(a + 1) + \cdots + g(b - 1). \quad (2)$$

Notice the sum goes to $b - 1$ instead of to b; this is required to make the analogy with definite integrals work.

Table of Finite Differences and Indefinite Sums

Define the harmonic number function

$$H(x) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{x},$$

when x is an integer. Furthermore, define the “right-shift” operator

$$Ef(x) = f(x + 1).$$

We have the following table of differences and sums, like an integral table.
Table of finite differences and indefinite sums

<table>
<thead>
<tr>
<th>f</th>
<th>$\Delta f = g$</th>
<th>f</th>
<th>$\Delta f = g$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^2 = 1$</td>
<td>0</td>
<td>$2x$</td>
<td>$2x$</td>
</tr>
<tr>
<td>$x^1 = x$</td>
<td>1</td>
<td>c^x</td>
<td>$(c - 1)c^x$</td>
</tr>
<tr>
<td>x^m</td>
<td>mx^{m-1}</td>
<td>$c \cdot f$</td>
<td>$c \Delta f$</td>
</tr>
<tr>
<td>$x^{m+1} / (m+1)$</td>
<td>x^m</td>
<td>$f + g$</td>
<td>$\Delta f + \Delta g$</td>
</tr>
<tr>
<td>$H(x)$</td>
<td>x^{-1}</td>
<td>fg</td>
<td>$f \Delta g + Eg \Delta f$</td>
</tr>
</tbody>
</table>

Recognizable in the right-hand column are the constant, sum, and product rules of finite difference, analogous to differentiation. Also, recall that reversing the product rule gives us a sum by parts (cf. integration by parts) formula:

$$\sum u \Delta v = uv - \sum E v \Delta u$$

which can be made into a definite sum formula:

$$\sum_{a}^{b} u \Delta v = u(b - 1)v(b - 1) - u(a)v(a) - \sum_{a}^{b} E v \Delta u$$

Binomial Coefficients

Finally, recall that the binomial coefficients are defined for integer n and k as

$$\binom{n}{k} = \begin{cases} \frac{n!}{(n - k)!k!} & \text{if } 0 \leq k \leq n, \\ 0 & \text{if } n < k. \end{cases}$$

We have the following simple binomial identity:

$$\binom{n + 1}{k} = \binom{n}{k} + \binom{n}{k - 1}$$

Project Exercises

1. Prove the finite difference power rule in (1).
2. Prove the sum rule $\Delta(f + g) = \Delta f + \Delta g$ of the table.
3. Verify the identity $x^2 = x^2 + x^1$, and use it to compute the sum $\sum_{k=0}^{n-1} k$ using finite calculus facts.
4. Prove $\Delta H(x) = x^{-1}$ (you may assume x is a positive integer).
5. Prove the two exponential rules in the table, i.e., $\Delta 2^x = 2^x$ and $\Delta c^x = (c - 1)c^x$. Explain two connections (analogies or differences) with the usual calculus or formulas you are familiar with.
6. Use the definite sum by parts formula in (4) to evaluate $\sum_{k=1}^{n-1} k2^k$.
7. Compute $\Delta \left(\binom{n}{k}\right)$, and use (5) to compute $\sum_{x=x_0}^{x_{n-1}} (x)$.
8. Suppose that instead of defining the finite difference as $\Delta f(x) = f(x + 1) - f(x)$, that we define $\nabla f(x) = f(x) - f(x - 1)$. Can we define finite difference and indefinite sum formulas analogously to the table?
9. Suppose that instead of defining the finite difference as $\Delta f(x) = f(x + 1) - f(x)$, we define it as the “middle difference” $\Delta f(x) = f(x + 1/2) - f(x - 1/2)$. What is the second finite difference $\Delta^2 f(x)$ of $f(x)$ (analogous to the second derivative)? Can we find any nice formulas for second derivatives under this assumption?

References