I. Short answer (1.5 pts each). No partial credit – only the response will be graded. Suggested time 1 hour.

- 1. Find functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ such that $f \circ g$ has the rule $(f \circ g)(x) = |x^2 + 7|$.
 - (a) $g(x) = x^2$, $f(x) = \lfloor x \rfloor + 7$.
- (b) $g(x) = \lfloor x \rfloor + 7$, $f(x) = x^2$.
- (c) $g(x) = |x|, f(x) = x^2 + 7.$
- (d) $q(x) = x^2 + 7$, f(x) = |x|.
- (e) q(x) = x + 7, $f(x) = |x^2|$.
- (f) q(x) = |x+7|, $f(x) = x^2$.
- 2. Circle the letter for the correct statement about the function $f: \mathbb{Z} \to \mathbb{Z}$ with rule f(x) = 2x.
 - (a) f is one-to-one and onto.
- (b) f is onto but not one-to-one.
- ((c)) f is one-to-one but not onto.
- (d) f is neither one-to-one nor onto.
- 3. Suppose $g: \mathbb{R} \to \mathbb{R}$ has the following property for all real numbers x and y: if x < y then g(x) > g(y). (I.e., g is strictly decreasing.) Which of the following is true?
 - (a) g must be 1-1 but is not necessarily onto \mathbb{R} .
 - (b) g is onto \mathbb{R} but is not necessarily 1-1.
 - (c) g must be both 1-1 and onto \mathbb{R} .
 - (d) g is not necessarily 1-1 and not necessarily onto \mathbb{R} .
- 4. Write down the initial term and common ratio of the series $\sum_{i=3}^{\infty} \frac{2 \cdot 4^{i}}{5^{i}}.$ initial term: $\frac{2^{i} \cdot \frac{4^{3}}{5^{3}} \frac{12^{8}}{5^{3}}}{\text{common ratio:}} = \frac{4}{5}$

$$\sum_{i=3}^{\infty} \frac{2 \cdot 4^{i}}{5^{i}}.$$

$$\frac{2 \cdot 4^{3}}{5^{3}} + \frac{2 \cdot 4^{4}}{5^{4}} + \dots$$

- 5. Write down the initial term and common difference of the progression $(4, -3, -10, -17, \ldots)$. initial term: ______ common difference: ______
- 6. Suppose $f: \mathbb{Z} \to \mathbb{R}$ has the rule f(n) = 2n 3. Circle the letter corresponding to the range of f.
 - (a) the set of natural numbers $\{0, 1, 2, \ldots\}$
- (b) Z
- ((c)) the set of odd integers

- (d) the set of even integers
- (e) the real numbers
- (f) the rational numbers

- (f) 1

X=-1, Y=1

8. What is the probability of rolling a multiple of 3 on a fair 6-sided die?

(a) 1/6

(b) 2/6

(c) 3/6

(d) 4/6

(e) 5/6

(f) 1

9. Recall the following properties of a relation $R \subseteq A \times A$ (saying a R b is the same as saying $2\rho \uparrow S$ $(a,b) \in R$:

Reflexive:

For all $a \in A$, a R a.

Symmetric:

For all $a, b \in A$, if a R b, then b R a.

Antisymmetric:

For all $a, b \in A$, if a R b and b R a, then a = b.

Transitive:

For all $a, b, c \in A$, if a R b and b R c, then a R c.

Check the boxes to the left of the properties satisfied by the relation $R = \{(x, y) \in \mathbb{R}^2 \mid x < y\}$.

- reflexive
- symmetric
- antisymmetric
- transitive

10. A fast food restaurant offers 3 types of items: tacos, hamburgers, and chicken. Assume there is an unlimited supply of each type of item. In how many ways can a very hungry person buy 5 items if the order of the items does not matter?

- (a) P(5,3)
- (b) C(5,3)

tacos | hombungers | chicken

- (c) P(7,2)
- (d) C(7,2)

C(5+3-1,3-1)

11. What is the minimum number of persons in a group necessary to guarantee that at least 4 of them were born on the same day of the week?

(a) 13

(e) 5^3

(b) 22

N= (k-1).n+1

- (c) 20
- (d) 4
- (e) 28 (f) 21

 $N = 3 \cdot 7 + 1 =$

- 12. Recall that the power set $\mathcal{P}(S)$ of the set S is defined to be the set containing all subsets of S. Let $S = \{1, 2, 3, 4\}$. In the blank to the left of each statement, circle T if the statement is true, and F if false. (Therefore this question has 5 answers!!)
 - (iii) $\{1,3\} \in \mathcal{P}(S)$ T F (ii) $\{1,3\} \subseteq \mathcal{P}(S)$ T F (iv) $\{\{2\},\{4\}\} \subseteq \mathcal{P}(S)$
- 13. Which of these assertions is correct concerning the statement "If x^3 is irrational, then x is irrational?"
 - (a) This statement is true, as can be shown most easily using a direct proof.
 - (b) This statement is true, as can be shown most easily using a proof by contraposition.
 - (c) This statement is false because a counterexample can be found.
 - This statement is false because the negation of the statement can be proved easily by contradiction.
- 14. Suppose you want to give a proof by contrapositive of this result for all integers: "If a is odd and b is even, then a + b is odd." Circle the letter of the assumption you would begin the proof with.
 - (a) a is odd and b is even.
- (b) a + b is even. (c) a is even or b is odd.
- (d) a is even and b is odd.
- (e) a+b is odd.
- 15. Suppose you want to prove a theorem about the product of absolute values of real numbers $|x| \cdot |y|$. If you were to give a proof by cases, what set of cases would probably be the best to use?
 - (a) x > y; x < y; x = y
 - (b) x divides y; y divides x; gcd(x, y) = 1
 - (c) Both x and y nonnegative; one negative and one nonnegative; both negative
 - (d) Both x and y rational; one rational and one irrational; both irrational.
 - (e) Both x and y even; one even and one odd; both odd.
- RN(SNT) = RN(SUT) 16. According to De Morgan's laws, $\overline{R \cup (S \cap T)} =$
 - (a) $\overline{R} \cap (S \cap T)$.
- (b) $\overline{R} \cup (\overline{S} \cap \overline{T})$.
- (c) $\overline{R} \cap (\overline{S} \cup \overline{T}).$

- (d) $\overline{R} \cup (S \cap T)$. (e) $\overline{R} \cap (\overline{S} \cap \overline{T})$.

17. An algorithm prints out each bit in a bitstring of length n. What is a reasonable operation with which to measure the complexity of the algorithm, and what is the best big-oh notation for the number of these operations assuming the algorithm is efficient?

operation: print bit big-oh complexity:

- 18. Circle the letter corresponding to the true statement.
 - (a) If f(x) is $\Omega(g(x))$ then g(x) is $\Omega(f(x))$. (b) If f(x) is $\Theta(g(x))$ then g(x) is $\Theta(f(x))$.
 - (c) If f(x) is O(g(x)) then g(x) is O(f(x)). (d) If f(x) is $\Omega(g(x))$ then g(x) is $\Theta(f(x))$.
- 19. Is 133 prime? (Circle one.) $3 \begin{array}{c} 4 \\ 133 \\ 12 \\ \hline 13 \end{array} \begin{array}{c} 19 \\ 7 \\ \hline 133 \\ \hline 4 \\ \hline 3 \end{array}$
- 20. Compute $gcd(2^3 \cdot 3^4 \cdot 7^3, 2^5 \cdot 5^2 \cdot 7^2)$.

 Answer: $2^3 7^2$
- 21. Compute the following: $32 \mod 7 = 4$ $32 = 4 \cdot 7 + 4$ $-30 \mod 9 = 6$ $-30 = -4 \cdot 9 + 6$
- 22. Suppose that P(n) is the statement "n+1=n+2." What is wrong with the following "proof" that the statement P(n) is true for all nonnegative integers n:

You assume that P(k) is true for some positive integer k; that is, k+1=k+2. Then you add 1 to both sides of this equation to obtain k+2=k+3; therefore P(k+1) is true. By the principle of mathematical induction P(n) is true for all nonnegative integers n.

- (a) The proof is incorrect because the statement used in the inductive hypothesis is incorrect.
- (b) There is nothing wrong with this proof.
- (c) The proof is incorrect because you cannot add 1 to both sides of the equation in the inductive step.
- (d) The proof is incorrect because there is no basis step.
- 23. For which of the following is the recursively defined set S equal to the set of odd positive integers?
 - (a) $1 \in S; 3 \in S; x \in S \to x + 4 \in S.$ (b) $99 \in S; x \in S \to x 2 \in S$
 - (c) $2 \in S; x \in S \to x + 2 \in S$ (d) $1 \in S; x \in S \to 2x + 1 \in S$
 - (e) None of these

24. A recursive algorithm for computing the Fibonacci numbers is as follows:

procedure fibonacci(n : nonnegative integer)if n = 0 then return 0 else if n = 1 then return 1 else return fibonacci(n-1) + fibonacci(n-2)

How many times is fibonacci(1) called in order to compute fibonacci(4)?

(a) 0

(b) 1

(c) 2

(e) 5

(f) 8

25. How many different passwords are available if a password consists of 5 lowercase letters followed by 2 decimal digits (from $\{0, 1, \ldots, 9\}$)?

- (a) $5 \cdot 26 + 2 \cdot 10$
- (b) $26^5 + 10^2$
- (c) $P(26,5) \cdot P(10,2)$

- (d) P(26,5) + P(10,2)
- (e) $C(26,5) \cdot C(10,2)$
 - 26.26.26.26.26.10.10

(f) $26^5 \cdot 10^2$

26. A standard deck of playing cards consists of 52 cards, which correspond to the set $\{A,2,3,4,5,6,7,8,9,10,J,Q,K\}\times\{\clubsuit,\diamondsuit,\heartsuit,\spadesuit\}$, so that each card has one of 13 ranks and one of 4 suits. How many 5-card hands are a full house, that is, consisting of 3 cards of one rank and 2 cards of a second rank?

(a) $13 \cdot 12 \cdot C(4,3) \cdot C(4,2)$

- **(b)** $C(13,2) \cdot C(4,3) \cdot C(4,2)$

(c) $P(13,2) \cdot P(4,3) \cdot P(4,2)$ (d) $13 \cdot 12 \cdot P(4,3) \cdot P(4,2)$ pick triple rank: 13 ways pick pair suits C(4,3) ways pick pair rank: 12 ways sum rule of counting

- 27. How many permutations of the letters in the word MISSISSIPPI are there?
 - (a) $P(11,4) \cdot P(11,4) \cdot P(11,2)$
- (b) 11!/10
- (c) $11!/(2 \cdot 4! + 2!)$

- (d) $C(11,4) \cdot C(11,4) \cdot C(11,2)$

(e) 11!/(4!·4!·2!) | 11 letters | M:1 S | T:4 P

28. What is the best big-oh notation for the number of comparisons used by mergesort to sort a list of n numbers?

Answer: O(n log

- 29. Suppose Q(u, v, w) is a predicate where the universe for u, v, and w is $\{0, 1\}$. Also suppose that the predicate is true in the following cases – Q(0,0,0), Q(0,0,1), Q(1,0,0), Q(1,1,1) – and false otherwise. Circle the letter of the true quantified statement.
 - $((\mathbf{a})) \exists u \exists v \forall w \ Q(u, v, w)$
 - (b) $\exists u \exists w \forall v \ Q(u, v, w)$
 - (c) $\exists u \forall v \forall w \ Q(u,v,w)$
 - (d) $\forall u \exists w \forall v \ Q(u, v, w)$
- 30. Circle the letter of the negation of $\forall x \exists y \ (x < y)$.
 - (a) $\exists x \exists y \ (x \geq y)$
- (b) $\exists x \forall y \ (x \ge y)$ (c) $\forall x \exists y \ (x \ge y)$ (d) $\exists x \forall y \ (x < y)$
- 31. Circle the letter of the statement which makes the implication about sets true. If $S \subseteq T$, then
 - (a) $\overline{T} \subseteq \overline{S}$.
- (b) $T \subseteq S \cap T$.

- (d) $T-S\subseteq S-T$.
- (e) $S \cup T = S \cap T$.

- 32. Circle the letter of the inverse of the statement "If it is a warm day, then I go hiking."
 - (a) If I go hiking, then it is a warm day.
 - (b) If it is not a warm day, then I do not go hiking.
 - (c) If I do not go hiking, then it is not a warm day.
 - (d) It is a warm day, and I do not go hiking.
- 33. Assume that a, b, and c are all positive integers larger than 1. Circle the letter of the negation of the statement "a is prime, and b and c are composite."
 - (a) a is composite and b and c are prime.
 - (b) a is composite, and either b is prime or c is prime.
 - (c) If a is composite, then b is prime or c is prime.
 - (\mathbf{d}) a is composite or b is prime or c is prime.
 - (e) Either a is composite, or b is prime and c is prime.
- bygyl

p: a prime g: la composite r: c composite

Part II. Computation, Algorithms, and Examples (5 pts ea.). Show work for full credit. Suggested time 25 minutes.

34. Use the Euclidean algorithm to find gcd(132, 102).

$$132 = 1.102 + 30$$

 $102 = 3.30 + 12$
 $30 = 2.12 + 6$
 $12 = 2.6 + 0$
 $9cd = 6$

35. Give an example of a function with domain $\{0, 1, 2, 3\}$ and codomain $\{r, s, t\}$ which is not one-to-one and not onto.

36. Trace through the Insertion Sort algorithm on the list 2, 4, 1, 3 by writing down the order of the list after each increment of j or i.

```
procedure insertionSort(a_1, \ldots, a_n: reals with n \geq 2)
                                                         Trace
    for j := 2 to n
                                                         initial list:
    begin
         i := 1
                                                         j = 2, i = 1:
         while a_i > a_i
                                                         j = 2, i = 1.
              i := i + 1
                                                         j = 3, i = 2:
                                                                            2 4
         m := a_i
         for k := 0 to j - i - 1
                                                         j=3 i=3 1 2 4 3
              a_{j-k} := a_{j-k-1}
                                                         j=4 (=1 |
         a_i := m
   end
                                                         j=4 i=2 1
                                                        j = 4i = 3
if given exactly upon increment:
```

$$j=2 i=1$$
 2 1 4 3
 $j=3 i=1$ 1 2 4 3
 $j=3 i=2$ 1 2 4 3
 $j=3 i=3$ 1 2 4 3
 $j=4 i=1$ 1 2 4 3
 $j=4 i=2$ 1 2 4 3 Owhput 1 2 3 4
 $j=4 i=3$ 1 2 4 3

37. Draw the "dots and arrows" representation of a relation on a nonempty finite set A that is symmetric but not transitive. (An arrow from dot a to dot b means that a is related to b. See the multiple choice for definitions of symmetric and transitive.)

38. Determine whether the following two propositions are logically equivalent:

39. Compute the number of binary bit strings of length 8 that either begin with two 0s or end with three 1s.

A = desired set
B =
$$\{00b_3...b_8 \mid b_3,...,b_8 \in \{0,1\}\}$$
 Bnc= $\{00d_3d_4d_5|11| d_3,d_4,d_5 \in \{0,1\}\}$
C = $\{c_1...c_5|11| c_{1,...,c_5} \in \{0,1\}\}$ $\{0,1\}\}$
A = BUC
 $|A| = |B| + |C| - |B| + |C|$
= $|a| + |a| + |a|$

42. For sets R, S, and T, prove that $\overline{(R \cap S \cap T)} = \overline{R} \cup \overline{S} \cup \overline{T}$. Use any of the three proof methods

42. For sets R , S , and T , prove that $(R \cap S \cap T) = R \cup S \cup T$. Ose any of the three proof methods							
we discussed, but be sure to show the details. Venn diagrams only are not a proof.							
Set Membership Table						Set equality proof	
		ROSOT	R	5	一	RUSUT	ROSOT = {x x \ ROSOT}
12 > 1 1	113(11)		0	0	0	0	$= \{ \times \mid \times \notin RNSOT \}$
	,	0	0	0			= {x ¬(xeRxeSxxeT)}
2110	0	1	0	0			
X31 0 1	0	1	0	1	0	1	= {x (x e R) V (x e S) V (K e T
X41 0 0	0	1	D	1	1	1	
chlili	0	1	1	0	0	1	= {x XER V XES V XET]
(6) 10	Ď	1 1	l	0	1		= {x x ∈ RUSUT}
	0		<u> </u>	-	0		
MD 10 1			1	1	1		= RUSUT. D
PD DIO 1	U	_	1		1 1	1 1	
c transaction							
same, so sets are equal							
R S S S S S S S S S S S S S S S S S S S							
$\begin{array}{c c} X_4 & X_2 & X_6 \\ \hline X_3 & X_4 & X_5 \end{array}$							
X8 (X)							
T							
G-8							

Set equality proof

ROSOT =
$$\{x \mid x \in ROSOT\}$$

= $\{x \mid \forall (x \in R \land x \in S \land x \in T)\}$

= $\{x \mid \forall (x \in R) \lor \forall (x \in S) \lor \forall (x \in T)\}$

= $\{x \mid x \in R \lor x \in S \lor x \in T\}$

= $\{x \mid x \in R \lor x \in S \lor x \in T\}$

= $\{x \mid x \in R \lor x \in S \lor x \in T\}$

= $\{x \mid x \in R \lor x \in S \lor x \in T\}$

= $\{x \mid x \in R \lor x \in S \lor x \in T\}$

43. Prove or disprove: For all integers a, b, c, if a divides bc, then a divides b or a divides c.

Disproof by counterexample.
$$a = 6$$
, $b = 2$, $c = 3$. $a \mid b \cdot c$ since $6 \mid 6$ but $6 \nmid 2$ and $6 \nmid 3$. D

Part III. Proofs (5 pts ea.). Write complete line-by-line proofs for full credit. Substantial partial credit for good proof structure. Suggested time 35 minutes.

40. The Fibonacci numbers are defined by f(0) = 0, f(1) = 1, and for all $n \ge 2$, f(n) = f(n-1) + 1f(n-2). Prove that for all positive integers $n \geq 2$, $f(n) \leq 2^{n-2}$.

For all integer k=2, let P(+e) be the statement f(h) = 2k-2

Bases 1=2. f(a)=f(1)+f(0)=(+0=1 \leq 2^2=1. P(a) True. $f(3) = f(2) + f(1) = 1 + 1 = 2 = 2^{3-2} = 2$. f(3) True.

Inductive step Let R be integer = 3 and assume P(2), --, P(+e) true. f(k+1) = f(k) + f(k-1) since k+1=2. (defation)

= 2k-2 + 2k-3 since 2 = k-1 < k, by inductive assumption

< 2k-1

< 2(R+1)-2

P(te+1) is true.

By strong induction, P(n) Is true for all integer n=2.

41. Use Mathematical Induction to prove that any positive integer amount of postage of at least 14 cents can be composed of 3 and 8 cent stamps.

For all integer 1214, let P(10) be the statement " I cents can be amposed of 3 cent and 8 cent stamps."

Bases PC14) true since 14¢ = 8¢ +3¢ +3¢

P(15) true since 15¢ = 3¢ + 3¢ + 3¢ + 3¢ + 3¢

P(16) true since 16 = 8¢+8¢

Inductive step Let & be integer > 16 and assume P(14), -, P(k) true.

+1≥17, so k-2≥14.

(k+1) 4 = (k-2) 4 + 34

and P(12-2) true by induction since 14 = 12-2 = 12

Thus Plati true.

By strong induction, P(n) true for all integers n 2 14. \Box