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Math 152 Exam 3, Fall 2006

Instructions. You must show work in order to receive full credit. Partial credit is possible for
work which makes positive progress toward the solution.

Conditions. No calculators, notes, books, or scratch paper. By writing your name on the
exam you certify that all work is your own, under penalty of all remedies outlined in the student
handbook. Please do not talk until after leaving the room.

Time limit: 1 hour 15 minutes (strict).

NOTE: The topics may not be in order either of increasing difficulty or of the order they were
covered in the course. Problems are 10 points each. Form A1.

POSSIBLY USEFUL FORMULAS
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[
f

(
x0+x1

2

)
+ f

(
x1+x2

2

)
+ · · ·+ f

(
xn−1+xn

2

)]
cos2 x = 1+cos 2x

2
Tn = ∆x
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F = ρgAd |ET | < K(b−a)3

12n2 (K ≥ f
′′
(x))

|Rn(x)| ≤ M
(n+1)!

|x− a|n+1 n · (r− r0) = 0

Sn = ∆x
3

[f(x0) + 4f(x1) + 2f(x2) · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)]
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∑∞
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∫ b
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f(x) = y ⇔ f−1(y) = x
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SHOW WORK FOR FULL CREDIT NO CALCULATORS

1. Find the value of C in the partial fraction decomposition

x3 + 2x2

(x2 + 2)2
=

Ax + B

x2 + 2
+

Cx + D

(x2 + 2)2
.

2. The following slope field represents the Newton’s Law of Heating and Cooling for an object
with temperature T (t) at time t for a certain environment with an ambient temperature
of TS = 50oC. Use the slope field to

(i) Estimate the time in minutes it takes for an object with temperature 5oC to
increase to a temperature of 40oC when placed in this environment (full credit for being
correct within 10%); and

(ii) Sketch the corresponding particular solution on the slope field.
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3. The general solution to the radioactive decay model for an amount A(t) of a radioactive
element at time t in years can be written as

A(t) = C · ek·t.

Suppose that after 1 year, 20% of the original amount has decayed.
(a) What is the half-life of the element, that is, the time it takes for half of the original
amount to decay?
(b) What does C stand for?

4. Given that

P (t) =
5000

1 + A · e−0.1·t

is the general solution to a logistic differential equation:
(a) Find the particular solution given the initial condition P (0) = 2500;
(b) Find the particular solution given the initial condition P (0) = 7500; and
(c) Circle the particular solution which is increasing when t is in the interval [0,∞).

5. Find and simplify the integrating factor for the following linear differential equation,
which may or may not be in standard form (do not solve for the general solution):

y′ · sin θ + y · cos θ = θ2 , where 0 < θ < π .
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6. Use the integrating factor I(x) = sec x to find the general solution of the differential
equation

y′ = x · sin x cos x + y · tan x .

7. Find the general solution y(x) of the differential equation

dy

dx
=

x

y2 · (x2 + 5)
.
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8. The slope field of a differential equation is represented below.
(a) Trace the particular solution for the initial condition y(0) = 3.
(b) Use Euler’s method with stepsize ∆x = 1 to trace an approximation to the particular
solution for the same initial condition.
(c) Make a general statement about how Euler’s method will differ given the concavity
of the particular solution.
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9. Sketch the curve by using the parametric equations to plot points. Indicate with an arrow
the direction in which the curve is traced as t increases.

x(t) = cos t

y(t) = sin2 t

π ≤ t ≤ 2π
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10. A projectile is fired so that its horizontal and vertical position at time t in seconds is given
by x(t) and y(t), respectively, where

x(t) = 20t

y(t) = 40t− 5t2

t ≥ 0.

(a) Find the maximum height (vertical position) of the projectile.
(b) Find the time at which this height is achieved.
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