Integral Test Estimation Formula

Here is a summary of the formula we derived on $11 / 5 / 03$ for estimating a series derived from a continuous, nonnegative, decreasing function.

Suppose the following:

- $f(x)$ is a continuous, nonnegative, decreasing function,
- the series $\sum_{n=1}^{\infty} a_{n}$ is defined by $a_{n}=f(n)$ for all n,
- we define $s_{n}=\sum_{i=1}^{n} a_{i}$ to be the nth partial sum, and
- both $\sum_{n=1}^{\infty} a_{n}$ and $\int_{0}^{\infty} f(x) d x$ converge, so that $\sum_{n=1}^{\infty} a_{n}=s$.

Then the quantity

$$
s_{n}+\frac{\int_{n}^{\infty} f(x) d x+\int_{n+1}^{\infty} f(x) d x}{2}
$$

is guaranteed to be within $\frac{a_{n}}{2}$ of s.

Note: In our derivation, we actually guaranteed that it would be within

$$
\frac{\int_{n}^{\infty} f(x) d x-\int_{n+1}^{\infty} f(x) d x}{2}=\frac{\int_{n}^{n+1} f(x) d x}{2}
$$

of s, but because $f(x)$ is decreasing, we know that $\int_{n}^{n+1} f(x) d x \leq a_{n}$.

