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ABSTRACT

We investigate a generalized version of the Pathological Liar Game of Ellis and

Yan. In our version, there are nonnegative integer parameters M,n, e, a, q with 0 <

a < q. The player (Carole) is equipped with M messages, each with an integral error

count. Carole performs the following procedure n times in sequence: she numbers the

messages in increasing order of error count, divides them into consecutive contiguous

size-q blocks, and selects a size-a subset of each block. The messages she does not

select have their error count increased by 1. Carole loses iff, after this process is

complete, there is at least one message with error count ≤ e. We allow n to approach

infinity and suppose e = bfnc for a fixed f ∈ (0, 1). We establish an upper bound

on the minimum M for which Carole always loses, as a function of n, by extending

a technique of Cooper and Ellis; we develop a simple process that approximates the

course of the game for any choice by Carole, and bound the difference between this

approximating process and any state of the game achievable by Carole. Along the

way we generalize several of the results of Cooper and Ellis in ways that suggest

future application to similar problems in adaptive coding theory.

ix
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CHAPTER 1

THE PROBLEM

1.1 Games to Be Examined

We will be dealing with a set of related Games. All feature two opposing

“players,” Paul and Carole,3 although Paul will often be constrained to a single choice

and have a purely formal role.

Game 1 (“Liar Game,” due to Berlekamp, Rényi and Ulam [Berlekamp, 1964,Rényi,

1961,Ulam, 1976]). There are nonnegative integer parameters M,n, e. There is a set

of M interchangeable messages. Carole picks one of the M messages, and Paul asks

Carole n questions to try to guess which message Carole picked. For each question,

Paul divides the messages into two disjoint subsets, and Carole tells him which subset

contains her message. Just before each question, Paul remembers each of Carole’s

previous answers. However, Carole can give an incorrect answer up to e times. Paul

wins iff, after the nth question, there is at most one message that Carole could have

chosen if she answered according to the rules.4

Observe:

• If we remove the requirement that Carole pick a message at the start of the

game, nothing changes: if her answers are consistent with at least one of the

messages, then she might as well have picked that message, and if her answers

are inconsistent with all of the messages then she loses anyway. What matters

3following the trend set by Spencer and Winkler [Spencer and Winkler, 1992]

4In other words, for each i ∈ {1, ..., n}, let Ai be the subset selected
by Carole in response to the ith question; Paul wins iff, after the nth question,∣∣∣⋃S⊆{1, ..., n}, |S|=n−e

⋂
i∈S Ai

∣∣∣ ≤ 1.
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is whether Paul has narrowed down the possible messages to one by the end of

the game.

• We can therefore formulate the game equivalently by removing the restriction

on the number of incorrect answers Carole is allowed to give. Instead, we can

assign an error count to each message, increasing whenever Carole selects a

set not containing that message, and eliminate any message with error count

≥ e+ 1.

• If Paul knows the error count of each message just after each previous question,

he can easily deduce Carole’s answer at each previous round.

• At the beginning of a given question, Paul can win the game iff, by the end of

his last question, he can increase the error count of all but one of the messages

by at least e+ 1 minus its current error count. Carole’s precise answer history

is therefore irrelevant.

We reformulate the liar game in light of these observations:

Game 1 (“Liar Game,” reformulated [Rényi, 1961]). There are nonnegative integer

parameters M,n, e. There is a set of M interchangeable messages. Each message is

given an error count of 0. Paul asks Carole n questions. For each question, Paul

divides the messages into two disjoint subsets, and Carole picks one of them. Each

message not contained in the set selected by Carole has its error count increased by

one. Just before each question, Paul knows only the current error count of each

message. Paul wins iff, after the nth question, there is at most one message with an

error count of at most e.

Given a strategy by Paul, an answer sequence by Carole can be expressed as
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a binary string.5 A strategy by Paul determines, for each message, a set of answer

sequences by Carole placing ≤ e errors on that message, so a winning strategy by

Paul corresponds to a packing of {0, 1}n with these sets. Such packings are called

adaptive packings.

We can also change the object of the Game:

Game 2 (“Pathological Liar Game,” due to Ellis and Yan [Ellis and Yan, 2004]).

There are nonnegative integer parameters M,n, e. There is a set of M interchangeable

messages. Each message is given an error count of 0. Paul asks Carole n questions.

For each question, Paul divides the messages into two disjoint subsets, and Carole

picks one of them. Each message not contained in the set selected by Carole has its

error count increased by one. Just before each question, Paul knows only the current

error count of each question. Paul wins iff, after the nth question, there is at least

one message with an error count of at most e.

In this Game, we can think of Paul as the leader of M hackers, trying to access

a computer system controlled by Carole. There are two passwords, and Paul knows

them both. Every minute, Paul picks which password each of his hackers should use

to try to access the system; Carole immediately knows which hackers are using which

passwords. She then picks one password to be the correct one for that minute. Once

a hacker has used an incorrect password e + 1 times, he is caught. Carole wants to

catch all the hackers.

Analogously to the previous observation, always-winning strategies for Paul

correspond to covers of {0, 1}n by particular types of sets. Such covers are known as

adaptive covering codes.

5We can do this by indexing the disjoint subsets Paul selects at each question
by 0 and 1, and letting the ith coordinate of the string be equal to the index of the
set Carole selects at the ith question, for each positive integer i ≤ n.
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We can let Paul pick q subsets instead of just 1, and we can let Carole pick a

subsets instead of just 1.

Game 3 (“q-ary a-pooled Pathological Liar Game,” adapted from Du and Hwang [Du

and Hwang, 2006] and Ellis and Yan [Ellis and Yan, 2004]). There are nonnegative

integer parameters M,n, e, q, a, with 0 < a < q. There is a set of M interchangeable

messages. Each message is given an error count of 0. Paul asks Carole n questions.

For each question, Paul divides the messages into q disjoint subsets, and Carole picks

a of them. Each message not contained in one of the sets selected by Carole has its

error count increased by one. Just before each question, Paul knows only the current

error count of each message. Paul wins iff, after the nth question, there is at least

one message with an error count of at most e.

Analogously to the previous observation, when a = 1, this corresponds to a

covering of {0, ..., q − 1}n by certain types of sets. In general, this corresponds to a

covering of An, where A is the set of size-a subsets of {0, ..., q − 1}.

We can play the same Game with more restrictions on the kinds of questions

Paul can ask:

Game 4 (“q-ary a-pooled Alternating Pathological Liar Game,” adapted from Du

and Hwang [Du and Hwang, 2006] and Cooper and Ellis [Cooper and Ellis, 2010]).

There are nonnegative integer parameters M,n, e, q, a, with 0 < a < q. There is a set

of M interchangeable messages. Each message is given an error count of 0. Paul asks

Carole n questions. For each question, the messages are placed in ascending order of

error count (breaking ties arbitrarily). Carole picks a size-a subset K ⊂ {0, ..., q−1}.

Each message whose position in the ordering is not congruent to an element of K

mod q has its error count increased by one. Paul wins iff, after the nth question,

there is at least one message with an error count of at most e.
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Paul’s questions don’t affect the error count except insofar as they restrict

Carole’s responses. We could instead restrict Carole’s responses in some other way:

Game 5 (“q-block a-pooled Alternating Pathological Liar Game”). There are

nonnegative integer parameters M,n, e, q, a, with 0 < a < q. There is a set of M

interchangeable messages. Each message is given an error count of 0. Paul asks

Carole n questions. For each question, the messages are placed in ascending order of

error count (breaking ties arbitrarily) and broken into blocks, with the first q messages

in the first block, the next q messages in the second block, and so on, until the last

M mod q messages are placed in the last block. For each block, Carole picks a size-a

subset K of {0, ..., q − 1}, and each message in that block whose position in the

ordering is not congruent to an element of K mod q has its error count increased by

one. Paul wins iff, after the nth question, there is at least one message with an error

count of at most e.6

In this game, we can again think of Paul as the leader of M hackers, and of

Carole as wanting to catch all the hackers. The hackers work out of dM
q
e offices, each

of which can accommodate q hackers. This time, Carole’s security is much better.

Every day and for each office, she selects a of the hackers in that office to be detected,

and any hacker who is detected e + 1 times is caught. However, no two offices have

equally comfy chairs, so at the end of each day Paul rewards the hackers by assigning

some set of the best q hackers to the office with the comfiest chairs, a set of the next

q best to the office with the second-comfiest chairs, and so on.7

6Observe that Carole selects K for the last block as though she is pretending
that the last block has full size q.

7In this game, Paul doesn’t do anything except place the hackers in different
offices, and the only thing he knows about any hacker is the number of times that
hacker has been detected. Also, Carole’s handling of the least comfy office is a little
different: she assumes that the least comfy office is full, selects a chairs in that office,
and any hacker sitting in one of those chairs is detected.
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Note that Game 4 is strictly harder for Paul than Game 3 (because Paul has

fewer choices of constraint to place on Carole’s answer at each round), and Game 5

is strictly harder for Paul than Game 4 (because Carole has more possible answers to

choose from).

We will be interested in finding a sufficient condition for Paul to win Game 5,

and thus also to win Games 4 and 3. We will then also have a sufficient condition for

Paul to win Game 2, which is just Game 3 with q = 2 and a = 1.

1.2 Our Approach

As mentioned above, the only information that our strategies will need is the

error count associated with each message at the beginning of the current question.

We will call this information a “state,” and express it as a vector indexed by the

nonnegative integers,8 with its ith coordinate equal to the number of messages with

error count i.

For intuition’s sake, we will think of each message as a “chip” occupying a

nonnegative integer position. For each nonnegative integer i we place all chips with

error count i in a vertical stack at position i. We think of the positions as arranged

horizontally, with higher-numbered positions to the right of lower-numbered positions.

When Carole picks a set of messages, the messages she didn’t select all move one

position to the right. In discussions, we will appeal to the notion of “fractional chips”

when thinking about vectors with arbitrary real values.

We can then interpret Game 4 as Paul distributing chips into q piles, “dealer”-

8Cooper and Ellis consider functions with domain Z and finite support when
considering Game 2. After t rounds have been played, the number of messages with
j errors is equal to the number of chips at position -t+2j in their parametrization.
This convention allows the distribution of chips to be approximately described by the
pmf of a sum of t i.i.d. mean-zero indicator random variables.
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style, starting with a leftmost chip and ending at a rightmost chip. The same

interpretation works for Game 5, except that, after every q chips are distributed,

the order of the piles can be changed by Carole. This process will tend to make all

of the piles close to equal in size, so we would expect that every position i should be

sending about a q−a
q

fraction of the chips to the (i+ 1)th position after each question,

and keeping the rest. This will not always accurately describe the Game, since the

number of chips at each position will not always be divisible by q.

In Chapter 3, we will define the “linear machine,” which describes the situation

in which every position i sends precisely q−a
q

fractional chips to the (i+ 1)th position

and keeps the rest. We will also define the “liar machine,” which describes the precise

course of Game 5 given Carole’s choices. The idea will be to describe the behavior

of the linear machine,9 and then show that it is not too far away from describing the

liar machine. Williamson has shown that these bounds are optimal up to a constant

factor [Williamson, 2012]. 10 We then derive lower bounds on the number of chips

in certain regions of the linear machine to produce lower bounds on the analogous

quantities in the liar machine.

Using this framework, fixing a real error rate f ∈ (0, q−a
q

), and letting the

number of questions n approach infinity, we will find an asymptotic lower bound

on M , in terms of n, such that Paul can always win, subject to the condition that

e = bfnc.

9The terms “liar machine” and “linear machine” are due to Cooper and Ellis
[Cooper and Ellis, 2010]

10For each q, he finds a constant Cq such that, for a fixed integer N and a
sufficiently large integer T , the total difference between the liar machine and the
linear machine over the interval {dT

2
e, ..., dT

2
e + N} is at least Cq times our upper

bound. He treats the case where a = 1 and Xt takes a particular value for each
nonnegative integer t, but his arguments are easily extensible to the general case. His
argument uses results from our Sections 4.2 and 4.1.
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CHAPTER 2

OUTLINE OF RESULTS

In Section 2.1, we describe the main result of this paper. In Section 2.2, we

concisely outline the dependencies between sections.

2.1 The Main Result

Our goal is to prove the following:

Theorem 0. Let q, a be positive integers with a < q and f be an element of (0, q−a
q

).

Then there is a real constant c (depending on q and a) s.t., for all sufficiently large

integers n, and letting e := bfnc, Paul can win Game 5, regardless of Carole’s

responses, as long as

M ≥ c ·
√
blogq ln(n)c · qn∑bfnc

i=0

(
n
i

)
(q − a)ian−i

.

This corresponds to a sufficient condition for Paul to win Game 5, and thus

Games 4, 3, and 2 as well.11 The special case of this result for Game 2 (and stated

slightly differently) is due to Cooper and Ellis [Cooper and Ellis, 2010, Theorem 4].

2.2 Proof Structure

Definitions We define the Liar Machine, Linear Machine, and associated devices in

Chapter 3.

Lemma 4

• In Appendix A, we make minor modifications to a result of Siegel

[Siegel, 2001]. We state the modified result as Theorem 2.

11As far as we know, such conditions for Games 3, 4 and 5 have not previously
been considered explicitly, though in our experience many arguments by other authors
used to investigate Game 2 and its variations seem to lend themselves to generalization
to Game 3.
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• In Section 4.1, we use Theorem 2 to derive Lemma 4.

Lemma 12 and Fact 6

• In Section 4.2, we prove Facts 6 and 8.

• In Section 4.3, we use Facts 6 and 8 to prove Lemma 11.

• In Chapter 5, we use Lemma 11 to prove Lemma 12.

Theorem 16 (the main result)

• In Section 6.1, we prove Fact 13, and use Lemma 4 to prove Fact 15.

• In Section 6.2, we use Lemma 12 and Facts 6, 13, and 15 to prove Theorem

16.

Theorem 16 then immediately implies Theorem 0.

While we draw the ideas for our arguments from many sources, the only outside

source a reader will require for our results is Siegel’s paper on median bounds [Siegel,

2001], which we discuss in more detail (as it relates to our results) in Appendix A.

In Appendix B, we describe our conventions for thesis organization and for

the use of common mathematical symbols.
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CHAPTER 3

THE MODEL

We formalize what we discussed in Section 1.2.

Convention 1. We will now fix positive integers q, a with a < q, and f ∈ (0, q−a
q

).

Convention 2. Given a nonnegative integer i, we will use “ei” to denote the ith unit

vector.12

3.1 The Linear Machine

The linear machine expresses the approximate development of the Game, and

is independent of Carole’s choices.13

Definition 3. For a vector y indexed by the nonnegative integers and a nonnegative

integer i, let

L(y)(i) :=
a

q
y(i) +

q − a
q

y(i− 1).

By the binomial theorem we can see the following:

Fact 1. Given a vector y indexed by the nonnegative integers and nonnegative integers

t and j, Lt(y)(j) =
∑∞

j′=0 y(j′)q−t
(

t
j−j′
)
(q − a)j−j

′
at−j+j

′
.

12i.e., the vector, indexed by the nonnegative integers, whose ith coordinate is
1 and whose other coordinates are 0

13Given a game state described by a vector y, it happens that L(y) is equal
to the pointwise average of all possible states that Carole can produce from y in a
single round. We can also think of L as describing what happens to “most” of the
messages from one round to the next: when there are lots of messages, most of the
length-q blocks of messages consist completely of messages with all equal error counts,
and each such length-q block sends exactly q − 1 of its messages to the right by one
position, regardless of Carole’s selected messages for that block.
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If we start with 1 chip at position 0 and no chips elsewhere, and iterate the

linear machine t times, the number of fractional chips between positions i1 and i2 is

equal to q−t ·
∑i2

i=i1

(
t
i

)
(q − a)iat−i; we want to express this compactly.

Definition 4. For integers t, i1, i2, let(
t

i1...i2

)
q,a

:=

i2∑
i=i1

(
t

i

)
(q − a)iat−i.

3.2 Tracking the Excess Chips

Consider a fixed state with its chips ordered and divided into blocks according

to the rules of Game 5. Then for any block all of whose chips occupy the same

position, Carole’s choices for that block have no effect on the Game, since exactly

q − a chips from that block will always move to the right. We can therefore restrict

our attention to the “excess chips”; we want to keep track of these excess chips at

each position.

In Definition 5, for a state y, we will define functions νy and ν−y . For each

i, νy(i) + 1 counts the total number of chips at positions ≤ i contained in any block

spanning multiple positions. For each nonnegative integer k, ν−y (k) simply gives the

position of the kth such chip.

Definition 5.

• For an integer k, let (k mod q) be the unique element of {0, ... q−1} congruent

to k mod q. 14

• For an integer vector y indexed by the nonnegative integers and a nonnegative

integer i, let excessy(i) :=

14Note that we are not treating (k mod q) as an element of Zq, but of Z.
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
y(i) if y(i) ≤ (−

∑i−1
j=0 y(j) mod q)

(−
∑i−1

j=0 y(j) mod q) + (
∑i

j=0 y(j) mod q) if (−
∑i−1

j=0 y(j) mod q) < y(i).

• For an integer vector y indexed by the nonnegative integers and a nonnegative

integer i, let νy(i) := −1 +
∑i

j=0 excessy(j).

• For an integer vector y indexed by the nonnegative integers, let νy(∞) := −1 +∑∞
j=0 excessy(j).

• For an integer vector y indexed by the nonnegative integers and a nonnegative

integer k, let ν−y (k) := min{i : νy(i) ≥ k}.

Example 1. Let q := 7 and y := (7, 0, 11, 7, 0, 2, 8, 0, 0, 3, 0, 0, ...).

• The first block consists entirely of messages with 0 errors, and the second block

consists entirely of messages with 2 errors.

• The third block consists of 4 messages with 2 errors and 3 messages with 3

errors, so the messages in this block are “counted” by the νy function.

• The fourth block consists of 4 messages with 3 errors, 2 messages with 5 errors,

and 1 message with 6 errors, so the messages in this block are “counted” by the

νy function.

• the fifth block consists of of 7 messages with 6 errors, so the messages in this

block are not “counted” by the νy function.

• The sixth (and last) block consists of 3 message with 9 errors, so the messages

in this block are “counted” by the νy function (we think of the last block as

spanning multiple blocks since it is never “completed”).

• We thus have the following: νy(0) = −1, νy(1) = −1, νy(2) = 3, νy(3) =

10, νy(5) = 12, νy(6) = 13, νy(7) = 13, νy(8) = 13, νy(9) = 16, νy(∞) = 16.
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• Thus also: ν−y (0) = 2, ν−y (3) = 2, ν−y (4) = 3, ν−y (10) = 3, ν−y (11) =

5, ν−y (13) = 6, ν−y (14) = 9.

3.3 Carole’s Choices

We want to describe Carole’s choices in an efficient way. We will do this using

two observations, given a state y:

• We can think about Carole’s answers in terms of the deviation of the resulting

chip movements from those prescribed by the linear machine. When Carole

moves a chip at position i to the right, she is transferring a
q

fractional chips

from the ith position to the (i + 1)th. When she fixes a chip at position i, she

is transferring a−q
q

fractional chips from the ith position to the (i+ 1)th.

• Since we don’t need to consider blocks all of whose chips occupy the same

position, we can express Carole’s answer as a selection of a residue classes

mod q for each block of q consecutive integers in {0, ..., νy(∞)}.

Now we can describe Carole’s responses:

Definition 6. Given a vector y indexed by the nonnegative integers, a function χ

is a legal response to y if χ is the restriction to {0, ..., νy(∞)} of a function

ψ : {0, ..., q(bνy(∞)

q
c + 1) − 1} → {a−q

q
, a
q
} s.t. the following holds: for each k ∈

{0, ..., bνy(∞)

q
c + 1}, the set {kq, ..., (k + 1)q − 1} contains exactly a elements of

ψ−1(a−q
q

).

Convention 7. We will use the symbol χ to represent choices for Carole, and the

symbol X to represent a finite-length sequence of such choices.

3.4 The Liar Machine
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Now we can define the liar machine, which expresses the exact development

of the Game given legal choices by Carole.

Definition 8. For an integer vector y indexed by the nonnegative integers and a

real-valued function χ defined on {0, ..., νy(∞)}, let

Lχ(y) := L(y) +

νy(∞)∑
k=0

χ(k) · (eν−y (k)+1 − eν−y (k)).

For each k and each chip with position ν−y (k), Carole transfers χ(k) fractional

chips to position ν−y (k) + 1. 15

Example 2. Let q := 7 and y := (7, 0, 11, 7, 0, 2, 8, 0, 0, 3, 0, 0, ...) as in Example 1,

and a = 5. The “blocks” are tracked in Example 1. Suppose that Carole wants to pick

a legal response χ to y; then she has the following options:

• χ(k) = a−q
q

for exactly 5 elements k of {0, ..., 6} and exactly 5 elements of

{7, ..., 13}, and χ(k) = a
q

for exactly 2 elements k of each of those two sets;

• χ(k) = a−q
q

for between 1 and 3 elements k of {14, 15, 16}, and χ(k) = a−q
q

for

the remaining elements k of {14, 15, 16}.

Suppose that she selects χ so that χ−1(a
q
) = {5, 6, 12, 13}; then

• L(y) = (7a
q
, 7(q−a)

q
, 11a
q
, −4a+11q

q
, 7(q−a)

q
, 7q−5a

q
, 2q+6a

q
, 8(q−a)

q
, 0, 3a

q
, 3(q−a)

q
, 0, ...)

• Lχ(y) = L(y) + (0, 0,−4a−q
q
, 4a−q

q
− a−q

q
− 2a

q
− 4a−q

q
, a−q

q
+ 2a

q
+ 4a−q

q
,−a−q

q
−

a
q
, a−q

q
+ a

q
− a

q
, a
q
, 0,−3a−q

q
, 3a−q

q
, 0, ...), so

• Lχ(y) = (7a
q
, 7(q−a)

q
, 7a+4q

q
, 7q
q
, 2q
q
, 8q−7a

q
, q+7a

q
, 8q−7a

q
, 0, 3q

q
, 0, 0, ...) =

(5, 2, 9, 7, 2, 3, 6, 2, 0, 3, 0, 0);

15Note that, for any function χ : {0, ..., νy(∞)} → {a−q
q
, a
q
} and any integer

vector y, Lχ(y) is an integer vector.
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this last vector corresponds to “fixing” the first 5 chips, “shifting” the next 2, “fixing”

the next 5, “shifting” the next 2, and so on, until the last 3 are “fixed.”

Finally, we describe the evolution of the Game over multiple rounds:

Definition 9. For an integer vector y indexed by the nonnegative integers, a positive

integer T , and a sequence of real-valued functions {Xt : t ∈ {1, ..., T} defined on

{0, ..., νy(∞)},

• let LX,0(y) := y;

• for each t ∈ {1, ..., T}, let LX, t(y) := LXt
(LX, t−1(y));

• if Xt is a legal response to LX, t−1(y) for each t ∈ {1, ..., T}, say that X is a

legal response sequence to y;

• let LX(y) := LX, T (y).
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CHAPTER 4

AUXILIARY RESULTS

This is the Section to which a reader familiar with the arguments of Cooper

and Ellis [Cooper and Ellis, 2010] should devote the most attention; we generalize

their Lemmas 6 (without lower bounds) and 14. In particular, the arguments of

Section 4.1 are probably the most complicated in this thesis.

Ultimately, we want two things: an interval-wise lower bound on the number

of chips in the linear machine, and an interval-wise upper bound on the difference

between the liar machine and linear machine. Section 4.1 will give us a pointwise lower

bound on the number of chips in the linear machine, extended to an interval-wise

bound in Section 6.1. Section 4.2 will give us some necessary calculus results. Section

4.3 will give us a pointwise upper bound on the difference between the liar machine

and the linear machine, extended to an interval-wise bound in Chapter 5.

Sections 4.1 and 4.2 are self-contained, while Section 4.3 invokes a result from

4.2. Two results from 4.2 appear in the proof of the main result (16).

4.1 Pointwise Lower Bound on the Number of Chips at the End

In Chapter 6, we will analyze the linear machine in two successive phases:

a long phase of length n1 and a short phase of length n2, with n1 + n2 = n. We

start with M = m · qn(
n

bfn1c...bfnc

)
q,a

chips at position 0 (with error count 0) and no

chips elsewhere. At the end of the Game, the following expression describes the

contribution to the number of fractional chips at position i by chips which, at time

n1, occupied positions between bfn1c and bfnc, inclusive:

m · qn(
n

bfn1c...bfnc

)
q,a

·
min(bfnc,i)∑
j=bfn1c

(
n1

j

)
· (q − a)jan1−j

qn1

(
n2

i−j

)
· (q − a)i−jan2−(i−j)

qn2
.

Ignoring a factor of m, cancelling powers of q, and pulling out a factor of
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(q − a)ian−i, we obtain the expression
(q − a)ian−i(

n
bfn1c...bfnc

)
q,a

·
bfnc∑

j=bfn1c

(
n1

j

)(
n2

i− j

)
. We wish

bound this number above a constant times
(q − a)ian−i(

n
bfn1c...bfnc

)
q,a

·
(
n

i

)
as n→∞; we want

lots of fractional chips to remain at the end of the Game.

A result implying this appears in the paper on the binary case by Cooper and

Ellis [Cooper and Ellis, 2010, Proposition 14], but we give a slightly more explicit

proof of a slightly more general result here (Lemma 4). We could actually do a bit

better if we accepted additional tedium.16

We will prove this result in (approximately) the following steps:

(i) Show that the sum
∑i−1

j=dn1
n
·ie

(n1j )( n2i−j)
(ni)

is small.

(ii) Note that n1

n
· i is the mean of a hypergeometric random variable (counting the

number of red balls selected lying in a pool when a total of i ≤ bfnc balls are

selected from a pool of n balls of which n1 are red), so that
∑bfnc

j=dn1
n
·ie

(n1j )( n2i−j)
(ni)

≥
1
2
.

(iii) Note that our sum can be interpreted as (q−a)i times a tail of the corresponding

hypergeometric distribution.

(iv) Use the fact that the mean and median of a hypergeometric random variable

differ by at most 1 to show that tail ≥ 1/2− (terms above the median), where

(terms above the median) is given by the small quantity in (i).

Steps (ii) and (iii) are pretty easy, but step (iv) follows from a clever result

appearing in a paper by Siegel, which we invoke as Lemma 2 below.

16We have reason to believe that this generalization may be of use in analyzing
more general versions of Game 1.
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The use of the hypergeometric distribution seems natural if we interpret each

position i as the result of i “rightward moves,” and interpret the number of fractional

chips as the sum of the probabilities of all possible allocations of i rightward moves

between the first and second phases (appropriately scaled). Indeed, subject to the

strategy we want to use, we can say that the denominator
(

n
bfn1c...bfnc

)
q,a

in our starting

chip quantity is in a sense the biggest we can get away with, since it “matches up”

with our (q − a)i ·
∑bfnc

j=bfn1c
(
n1

j

)(
n2

i−j

)
terms.

The following Lemma is effectively proven by Siegel [Siegel, 2001]:17

Lemma 2. Let an urn contain R red balls and B black balls. Suppose each red ball

has weight w#, and each black ball has weight w . Suppose that the balls are selected

one-by-one without replacement where each as yet unselected ball is given a probability

of being selected at the next round that equals its current fraction of the total weight

of all unselected balls. Suppose r and b are nonnegative real numbers with integer sum

satisfying r = R(1 − e−w#ρ) and b = B(1 − e−w ρ), for some fixed ρ > 0. Let r + b

balls be drawn from the urn as prescribed. Let X# be the number of red balls selected

by this random process, and let X be the number of black, so that X# +X = r + b.

Then Pr{X# ≥ brc} > 1
2

and Pr{X ≥ bbc} > 1
2
.

Following Cooper and Ellis [Cooper and Ellis, 2010, Corollary 13], we note an

immediate consequence of the above Lemma:

Lemma 3. If µ is the mean of a hypergeometric random variable X, then Pr{X ≤

dµe} ≥ 1
2
.

Proof. Consider such a random variable X, and suppose that Pr{X = j} =
(Rj )·(

B
i−j)

(R+B
i )

for some nonnegative integers R,B, i. Let r and b be nonnegative real numbers

17For a discussion of this, see Appendix A.2.
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s.t. r
R

= b
B

and r + b = i, and let w := − ln(1 − r
R

). Let ρ := 1. Now define X# as

in the hypothesis of Lemma 2, with w = w = w# and R, r,B, b, ρ as just defined.

Then clearly Pr{X# ≥ brc} > 1
2
, so it suffices to show that X and X# have the same

probability mass function; this will now be done.

Let S be the set of injective mappings from {1, ..., r+ b} to the set of R+B

balls. For each σ ∈ S, let Prσ be the probability that, for each k ∈ {1, ..., r+ b}, the

kth-selected ball is equal to s(k). For each j ∈ Z+, let Sj be the set of mappings in S

whose ranges contain precisely j red balls; then clearly |Sj| = (r + b)! ·
(
R
j

)
·
(

B
r+b−j

)
.

Thus it suffices to show that, for each σ ∈ S, Prσ = 1

(r+b)!·(R+B
r+b )

= (R+B−r−b)!
(R+B)!

.

But for any σ ∈ S, Prσ is proportional to
∏r+b

k=1
w

(R+B)w−(k−1)w
= (R+B−r−b)!

(R+B)!
. Since

|S| = (R+B)!
(R+B−r−b)! , Prσ is thus equal to (R+B−r−b)!

(R+B)!
.

We are now ready to state our result for this Section (beware that the “r” in

our proof is not a direct analogue of the “r” above):

Lemma 4. Let κ be an element of (f, 1), and let λ := 12
fκ(κ−f)

. Suppose that, for

each positive integer n, nonnegative integers n1 and n2 are defined s.t. n1 + n2 = n,

n1

n
≥ κ for n sufficiently large, and n2 ≥ 2λ for n sufficiently large. Let γ̄ : Z+ → R+

be s.t. γ̄(n) < 1
λ

for n sufficiently large. Let δ̄(n) :=
√

min(γ̄(n) · n2, log1−λ·γ̄(n)
1
2
) for

each positive integer n s.t. γ̄(n) < 1
λ

.

Then for n sufficiently large, and for any nonnegative integer r s.t. fn2 −

δ̄(n) + n
n1
≤ r ≤ n− bfn1c,

bfn1c+r∑
j=bfn1c

(
n1

j

)(
n2

bfn1c+r−j

)(
n

bfn1c+r

) ≥ 1

2
−max

(
8

δ̄(n)
,

8

δ̄(n)2

)
. 18

18Think of γ̄(n) = 1√
n2

.
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Proof. Suppose that

(i) n is large enough that n− 1 ≥ n2 ≥ 2λ, n1

n
≥ κ, n ≥ 6

fκ
, and γ̄(n) ≤ 1

λ
. 19

Clearly,
bfn1c+r∑
j=bfn1c

(
n1

j

)(
n2

bfn1c+r−j

)(
n

bfn1c+r

) =
r∑
j=0

(
n1

bfn1c+r−j

)(
n2

j

)(
n

bfn1c+r

) .

Let p(j) :=
( n1
bfn1c+r−j

)(n2j )
( n
bfn1c+r)

for each nonnegative integer j. Then p, as a function

of j, is the probability mass function of a hypergeometric random variable with mean

n2

n
(bfn1c+ r); denote this quantity by µ. Then by Lemma 3 we have that

dµe∑
j=0

(
n1

bfn1c+r−j

)(
n2

j

)(
n

bfn1c+r

) ≥ 1

2
. (4.1)

Note next that

µ− r =
n1

n
(fn2 − r)−

n2

n
(fn1 − bfn1c). (4.2)

Thus in particular, if r ≥ fn2 then r ≥ µ, so since r is an integer r ≥ dµe and thus

the result follows immediately by (4.1). Thus suppose that

(ii) r ≤ fn2;

then −n2

n
(fn1−bfn1c) ≤ dµe−r ≤ (dµe−µ)+ n1

n
(fn2−r) ≤ (dµe−µ)−1+ n1

n
δ̄(n) ≤

δ̄(n);20 in particular,

dµe − r ≤ δ̄(n). (4.3)

19Note that this hypothesis is independent of r.

20This is where the addend n
n1

in the hypothesis comes in.
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Now for any positive integer k = µ+ δ s.t. 1 ≥ δ ≥ −γ̄(n) · n2, we have that

p(k)

p(k − 1)
=

(
n1

bfn1c+r−k

)(
n2

k

)(
n1

bfn1c+r−(k−1)

)(
n2

k−1

) =

(n2 − k + 1)((bfn1c+ r)− k + 1)

k(n− n2 − (bfn1c+ r) + k)
=

1 +
[n2(bfn1c+ r)− (k − 1)(n2 + bfn1c+ r) + (k − 1)2]

k(n− n2 − (bfn1c+ r) + k)
−

[k2 + kn− k(n2 + bfn1c+ r)]

k(n− n2 − (bfn1c+ r) + k)
=

1 +
n2(bfn1c+ r) + (n2 + bfn1c+ r)− 2k + 1− kn

k(n− n2 − (bfn1c+ r) + k)
=

1 +
(n2 + bfn1c+ r)− 2k + 1− nδ
k(n− n2 − (bfn1c+ r) + k)

.

Now since

• n− 1 ≥ n2 ≥ 1, n1

n
≥ κ, n ≥ 6

fκ
, and γ̄(n) ≤ fκ

2
(by (i));

• thus also k ≤ µ+ 1 ≤ n2 + 1 ≤ n; and

• r ≤ fn2 (by (ii)),

we have that

• |(n2 + bfn1c+ r)− 2k + 1− nδ| ≤ 4 ·max(1, |δ|) · n;

• n− n2 − (bfn1c+ r) + k ≥ n1 − fn ≥ (κ− f)n;

• k = µ+ δ ≥ κ
2
fn2 − n2

n
≥ κ

3
fn2,

so∣∣∣∣(n2 + bfn1c+ r)− 2k + 1− nδ
k(n− n2 − (bfn1c+ r) + k)

∣∣∣∣ ≤ λ · max(1, |δ|) · n
n · n2

≤ λ ·max(
1

n2

, γ̄(n));

thus in particular, ∣∣∣∣ p(k)

p(k − 1)
− 1

∣∣∣∣ ≤ λ ·max(
1

n2

, γ̄(n)). (4.4)
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Now by (4.4),

1 ≥
bµ+1c∑

k=dµ−δ̄(n)2e

p(k) ≥

p(bµ+ 1c) · δ̄(n)2 ·
(

1− λ ·max(
1

n2

, γ̄(n))

)δ̄(n)2

≥

δ̄(n)2 · 1

2
· p(bµ+ 1c).21

Thus in particular

p(bµ+ 1c) ≤ 2

δ̄(n)2
. (4.5)

Now also, since (1 + λ · γ̄(n))(1− λ · γ̄(n)) ≤ 1 and 1− λ · γ̄(n) > 0 (by (i)),

p(k) ≤ p(bµ+ 1c) · (1 + λ · γ̄(n))δ̄(n)2 ≤ p(bµ+ 1c) · (1− λ · γ̄(n))−δ̄(n)2 ≤ 2p(bµ+ 1c)

whenever dµ− δ̄(n)2e ≤ k ≤ bµ+ 1c; in particular we have that

p(k) ≤ 2p(bµ+ 1c) (4.6)

whenever dµ− δ̄(n)2e ≤ k ≤ bµ+ 1c.

By (4.6) and (4.5), we have that

bµ+1c∑
k=dµ−δ̄(n)e

p(k) ≤ (δ̄(n) + 1) · 2 · 2

δ̄(n)2
≤ max

(
8

δ̄(n)
,

8

δ̄(n)2

)
. (4.7)

Now
r∑
j=0

(
n1

bfn1c+r−j

)(
n2

j

)(
n

bfn1c+r

) =

bµ+1c∑
j=0

p(j)−
bµ+1c∑
j=r+1

p(j). (4.8)

21This is true since, by (i),

• δ̄(n)2 ≤ log1−λ·γ̄(n)
1
2
∈ R+ and,

• since n2 ≥ 2λ, we have that, if log1− λ
n2

1
2
≤ log1−λ·γ̄(n)

1
2
, then 1

n2
≥ γ̄(n) and

thus γ̄(n) · n2 ≤ 1 ≤ log1− λ
n2

1
2
.
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Now r + 1 ≥ dµ− δ̄(n)e by (4.3), so (4.7) and (4.1) dictate that the right-hand side

of (4.8) is bounded below by

bµ+1c∑
j=0

p(j)− 8

δ̄(n)
≥ 1

2
−max

(
8

δ̄(n)
,

8

δ̄(n)2

)
,

as desired.

4.2 Some Basic Calculus

Suppose we iterate the linear machine n times starting with 1 chip at position

0 and no chips elsewhere. Then given g ∈ (0, 1) s.t. gn ∈ Z, the number of fractional

chips at position gn is given by

q−n
(
n

gn

)
(q − a)gna(1−g)n,

which by the Stirling approximation is equal to

q−n
Θ(1)√

n
√
g
√

1− g
·
(

1

gg(1− g)(1−g)

)n (
(q − a)g a1−g)n ,

where the Θ(1) function is uniform in g. We are interested in the exponential “growth

rate” of this expression for a fixed g, and wish to express it as −1 plus a function of

g.

Definition 10. Given g ∈ (0, 1), let

Hq,a(g) := g logq(
1

g
) + (1− g) logq(

1

1− g
) + g logq(q − a) + (1− g) logq(a).

This generalizes the common entropy function, so that

q−n
(
n

gn

)
(q − a)gna(1−g)n

is equal to

q−n
Θ(1)√

n
√
g
√

1− g
·
(

1

gg(1− g)(1−g)

)n (
(q − a)g a1−g)n ,
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where again the Θ(1) function is uniform in g.

We will want a few simple properties of this function:

Fact 5. For g ∈ (0, 1), H ′q,a(g) = logq(
1−g
g

) + logq(q − a)− logq(a).

Fact 6. Hq,a is strictly increasing on (0, q−a
q

) and strictly decreasing on ( q−a
q
, 1).

Fact 7. Hq,a(
q−a
q

) = 1.

Fact 8. Given β ∈ R, limn→∞ n · (Hq,a(
q−a
q

+ βn−1/2)− 1) ∈ R.

Proof. By Facts 5 and 7 and L’Hôpital’s rule,

lim
n→∞

n · (Hq,a(
q − a
q

+ βn−1/2)− 1) =

lim
n→∞

n2 · βn
−3/2

2
· [logq(

a− qβn−1/2

q − a+ qβn−1/2
) + logq(

q − a
a

)] =

lim
n→∞

β

2
n1/2 · [logq(

a− qβn−1/2

q − a+ qβn−1/2
)− logq(

a

q − a
];

again by L’Hôpital’s rule, this expression is equal to

lim
n→∞

β2 · (− logq(e)) ·
q − a+ qβn−1/2

a− qβn−1/2
·
(

q

q − a+ qβn−1/2

)2

=

lim
n→∞

β2 · (− logq(e)) ·
q2

(a− qβn−1/2)(q − a+ qβn−1/2)
=

β2 · (− logq(e)) ·
q2

a(q − a)
.

4.3 Weighted Binomial Coefficients

In Chapter 5, we will want to show that the gap between the liar machine

and linear machine22 does not grow too large. Consider a chip-distribution function

22of Chapter 3
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y, a position i, and one of the “excess chips” at position i. After one step of the

liar machine, this chip gives rise to an appropriate (positive or negative) number of

“fractional discrepancy chips” at positions i and i+1. As we iterate the liar machine,

these fractional chips propagate via the linear machine. After iterating the linear

machine a specified number of times, the total number of these discrepancy chips

hitting a particular position j can be expressed as a difference of weighted binomial

coefficients. We will show that each of these differences is small, and also that the

differences originating from distinct excess chips tend largely to cancel each other out

when added together.

Remember that we consider q and a to be fixed, so that the bounds we will

derive may depend on q and a. 23

Definition 11. Given s ∈ Z+, B, j ∈ Z, let

Ds
B(j) :=

(
s

j −B

)
(q − a)j−Bas−j+B −

(
s

j

)
as−j(q − a)j.

4.3.1 Bimodality of Distance between Two Coefficients. The first step is to

show that Ds
B(j) is bimodal in j, so that a sum of alternating-sign coefficients times

Ds
B terms is bounded above in absolute value by a constant times the maximum value

of Ds
B.

Lemma 9. Given s ∈ Z+, B ∈ Z, Ds
B is bimodal in j, i.e. either

(a) there exist integers j1, j2 s.t., for any integer j, Ds
B(j) − Ds

B(j − 1) < 0 if and

only if j1 < j < j2, or

(b) there exist integers j1, j2 s.t., for any integer j, Ds
B(j) − Ds

B(j − 1) > 0 if and

only if j1 < j < j2.

23This dependence would not turn out to be too bad if we considered it. Our
bounds are independent of f , though our later results will not depend on this.
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Proof. Since Ds
B(j) = −Ds

(−B)(j−B), we may suppose without loss of generality that

B ≥ 0. We will show that (a) holds in this case.

Given j ∈ Z,

Ds
B(j − 1)−Ds

B(j) =

(
s

j −B − 1

)
(q − a)j−B−1as−j+B+1 −

(
s

j −B

)
(q − a)j−Bas−j+B−(

s

j − 1

)
(q − a)j−1as−j+1 +

(
s

j

)
(q − a)jas−j =

(
s+ 1

j −B

)
(q − a)j−B−1as−j+B+1

[
j −B
s+ 1

− q − a
a

s+ 1− j +B

s+ 1

]
−(

s+ 1

j

)
(q − a)j−1as−j+1

[
j

s+ 1
− q − a

a

s+ 1− j
s+ 1

]
;

this quantity has the same sign as(
s+ 1

j −B

)
[q(j −B)− (q− a)(s+ 1)]−

(
s+ 1

j

)(
q − a
a

)B
[qj − (q− a)(s+ 1)]. (4.9)

Now

• whenever q−a
q

(s+ 1) ≤ j ≤ q−a
q

(s+ 1) +B, (4.9) is negative;

• whenever j < q−a
q

(s+ 1) and j < B, (4.9) is nonnegative;

• whenever j > s+ 1 and j > q−a
q

(s+ 1) +B, (4.9) is nonnegative;

thus it suffices to show that the sign of (4.9), as a function of an integer j, is

nonincreasing on {B, ..., d q−a
q

(s + 1)e − 1} and nondecreasing on {b q−a
q

(s + 1) +

Bc+ 1, ..., s+ 1}. This will now be done.

Now for j ∈ {B, ..., s+ 1}, the sign of (4.9) is equal to the sign of

[q(j −B)− (q − a)(s+ 1)]−

[
B−1∏
i=0

s+ 2− j + i

j − i
q − a
a

]
[qj − (q − a)(s+ 1)];

also,
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(i) [q(j − B) − (q − a)(s + 1)] and [qj − (q − a)(s + 1)] are negative for j ∈

{B, ..., d q−a
q

(s+ 1)e − 1};

(ii) [q(j−B)− (q−a)(s+ 1)] and [qj− (q−a)(s+ 1)] are positive for j ∈ {b q−a
q

(s+

1) +Bc+ 1, ..., s+ 1};

(iii) as a function of j,
∏B−1

i=0
s+2−j+i
j−i

q−a
a

is nonnegative and nonincreasing on {B, ...,

s+ 1};

(iv) as a function of j, q(j−B)−(q−a)(s+1)
qj−(q−a)(s+1)

is nondecreasing on {B, ..., d q−a
q

(s+1)e−1}

and {b q−a
q

(s+ 1) +Bc+ 1, ..., s+ 1}.

Now by (i), (ii), and (iii), it suffices to show that the sign of q(j−B)−(q−a)(s+1)
qj−(q−a)(s+1)

−[∏B−1
i=0

s+2−j+i
j−i

q−a
a

]
, as a function of j, is nondecreasing on {B, ..., d q−a

q
(s+ 1)e− 1}

and {b q−a
q

(s+1)+Bc+1, ..., s}. But by (iii) and (iv), this quantity is equal to a sum of

two expressions which, as functions of j, are nondecreasing on {B, ..., d q−a
q

(s+1)e−1}

and {b q−a
q

(s+ 1) +Bc+ 1, ..., s+ 1}.

4.3.2 Distance between Two Close Coefficients. Now we bound Ds
1.

Lemma 10. There is a real constant c0 s.t., given s ∈ Z+,max{|Ds
1(j)| : j ∈ Z} ≤

qs · c0
s
.

Proof. For s ∈ Z+, j ∈ Z,

Ds
1(j) = (q − a)j−1as−j+1

[(
s

j − 1

)
−
(
s

j

)
q − a
a

]
=

(q − a)j−1as−j+1

(
s+ 1

j

)[
j

s+ 1
− q − a

a

s+ 1− j
s+ 1

]
=

1

a(s+ 1)
(q − a)j−1as−j+1

(
s+ 1

j

)
[qj − (q − a)(s+ 1)], (4.10)

so

Ds
1(j + 1)−Ds

1(j) =



28

1

a(s+ 1)
(q − a)jas−j

(
s+ 1

j + 1

)
[qj − (q − a)(s+ 1) + q]−

1

a(s+ 1)
(q − a)j−1as−j+1

(
s+ 1

j

)
[qj − (q − a)(s+ 1)] =

1

a(s+ 1)
(q − a)j−1as−j((q − a)

(
s+ 1

j + 1

)
[qj − (q − a)(s+ 1) + q]−

a

(
s+ 1

j

)
[qj − (q − a)(s+ 1)]); (4.11)

also, if j ∈ {0, ..., s+ 1}, then the right-hand side of equation 4.11 has the same sign

as

(q − a)(s+ 1− j)[qj − (q − a)(s+ 1) + q]− a(j + 1)[qj − (q − a)(s+ 1)]. (4.12)

Now for s ∈ Z+, the right-hand side of equation (4.10) is equal to 0 for any

integer j s.t. j ≤ −1 or j ≥ s + 2, so max{|Ds
1(j)| : j ∈ Z} is well-defined; letting

jmax be an integer s.t. |Ds
1(jmax)| = max{|Ds

1(j)| : j ∈ Z}, we have the following:

• If jmax ≤ 0 or jmax ≥ s + 1, then |Ds
1(jmax)| ≤ 1

a(s+1)
(q − a)s(s + 1)[q(s + 1) +

(q − a)(s+ 1)], which for s large enough is ≤ 1
s
qs.

• If 1 ≤ jmax ≤ s and neitherDs
1(jmax+1) = Ds

1(jmax) norDs
1(jmax)−Ds

1(jmax−1),

then the sign of Ds
1(jmax + 1) − Ds

1(jmax) is equal to −1 times the sign of

Ds
1(jmax)−Ds

1(jmax−1), and thus the sign of expression (4.12) with j = jmax is

equal to −1 times the sign of expression (4.12) with j = jmax − 1. Since (4.12),

as a function of j, is continuous on [0, s + 1], it follows that jmax = dj′e or

jmax = bj′c for some j′ ∈ [0, s+ 1] s.t. (4.12) = 0 for j = j′.

• If 1 ≤ jmax ≤ s and either Ds
1(jmax+1) = Ds

1(jmax) or Ds
1(jmax)−Ds

1(jmax−1),

then Ds
1(jmax) = Ds

1(j′) for some j′ ∈ {0, ..., s} s.t. Ds
1(j′ + 1) − Ds

1(j′) = 0

and thus s.t. (4.12) = 0 for j = j′.
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Thus it suffices to show that there is a real constant c0 s.t. the following holds:

for any s ∈ Z+ and any j′ ∈ [0, s+ 1] s.t. (q− a)(s+ 1− j′)[qj′− (q− a)(s+ 1) + q]−

a[qj′ − (q − a)(s + 1)] = 0, we have that |Ds
1(bj′c)| ≤ qs · c0

s
≥ |Ds

1(dj′e)|. This will

now be done.

Consider such a j′; then expression (4.12) is equal to

(q − a)(s+ 1− j)[qj − (q − a)(s+ 1) + q]− a(j + 1)[qj − (q − a)(s+ 1)] =

−qj[qj − (q − a)(s+ 1)]−a[qj − (q − a)(s+ 1)]+ (4.13)

(q − a)(s+ 1)[qj − (q − a)(s+ 1)] + q(q − a)(s+ 1− j) =

−q2j2 + 2q(q − a)(s+ 1)j − q2j + (q + a)(q − a)(s+ 1)− (q − a)2(s+ 1)2,

so

j′ =
2(q − a)(s+ 1)− q

2q
± 1

2

√
q2 − 4q(q − a)(s+ 1) + 4(q + a)(q − a)(s+ 1) =

(q − a)(s+ 1)

q
−

1±
√
q2 + 4a(q − a)(s+ 1)

2
;

thus by (4.10), for j ∈ {dj′e, bj′c},

|Ds
1(j)| ≤ 1

a(s+ 1)
(q − a)j−1as−j+1

(
s+ 1

j

)
q ·

3 +
√
q2 + 4a(q − a)(s+ 1)

2
.

Let β ∈ R+ be s.t., for s large enough,
3+
√
q2+4a(q−a)(s+1)

2
≤ β(s+ 1)1/2.

Let c+ be s.t., for s large enough and j ∈ {b q−a−1/2
q

sc, ..., d q−a+1/2
q

se},

(q−a)jas−j+1
(
s+1
j

)
≤ c+√

s+1
q(s+1)Hq,a( j

s+1
); this is possible by the Stirling approximation

and Definition 10.

Then for s large enough and j′ ∈ [0, s+ 1] s.t.

(q − a)(s+ 1− j′)[qj′ − (q − a)(s+ 1) + q]− a[qj′ − (q − a)(s+ 1)] = 0,
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both |Ds
1(dj′e)| and |Ds

1(bj′c)| are less than or equal to

qc+β

a(s+ 1)
· q(s+1)Hq,a( j′

s+1
);

now by Fact 6, for s large enough this is less than or equal to

qc+β

a(s+ 1)
· q(s+1)Hq,a( q−a

q
±β(s+1)−1/2)

and, by Fact 8, there is a real constant c′ s.t., for s large enough, this is less than or

equal to c′

s
qs+1. Thus, for s large enough, we have that |Ds

1(jmax)| ≤ q2c′c+β
a
· qs
s
.

Since each term Ds
B is just a sum of Ds

1 terms, we can now bound Ds
B.

Lemma 11. 24 There is a real constant c4 s.t., given s ∈ Z+, B ∈ Z,

(a) max{|Ds
B(j)| : j ∈ Z} ≤ qs · c4B

s
;

(b) max{|Ds
B(j)| : j ∈ Z} ≤ qs · c4√

s
.

Proof. For s ∈ Z+, B, j′ ∈ Z,

• |Ds
B(j′)| =

∣∣∣∑B−1
k=0 D

s
1(j′ − k)

∣∣∣ ; by Lemma 10, this is less than or equal to ≤

qs · c0B
s

, proving (a);

• also, |Ds
B(j′)| ≤ max{

(
s
j

)
(q − a)jas−j : j ∈ Z}.

Now for j ∈ Z s.t. j ≤ 1
2
q−a
q

or j ≥ 2 q−a
q
, we have by Fact 6 that

(
s
j

)
(q −

a)jas−j ≤ qs 1√
s

for s ∈ Z+ large enough. By the Stirling approximation and Facts 6

and 8, there is a real constant c′′ s.t., for s ∈ Z+ large enough and j ∈ Z s.t. 1
2
q−a
q
≤

24We name our constant “c4” to harmonize notation with Cooper and Ellis
[Cooper and Ellis, 2010, Lemma 6] .
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j ≤ 2 q−a
q
,
(
s
j

)
(q − a)jas−j ≤ qs c

′′
√
s
. Thus max{

(
s
j

)
(q − a)jas−j : j ∈ Z} ≤ qsmax(1,c′′)√

s
,

proving (b).
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CHAPTER 5

DISCREPANCY BOUNDS ON INTERVALS

We are now ready to bound the difference between the liar machine and the

linear machine25 in Lemma 12 by applying the results of Section 4.3. This generalizes

Theorems 2 and 3 of Cooper and Ellis [Cooper and Ellis, 2010]. We conclude the

chapter by discussing a further generalization.

Lemma 12. There is a real constant c5 s.t. the following holds: Let y be a vector

indexed by the nonnegative integers, let t be an integer greater than 1, let i, B be

nonnegative integers with B ≤ i, and let X be a legal response sequence to y with

length t. Then

1. if B + 1 ≥
√
t

2
, then

∣∣∣∑i
j=i−B[LX(y)(j)− Lt(y)(j)]

∣∣∣ ≤ c5 ·
√
t

2
, and

2. if B+1 ≤
√
t

2
, then

∣∣∣∑i
j=i−B[LX(y)(j)− Lt(y)(j)]

∣∣∣ ≤ c5 ·(B+1) · ln(t/(B+1)2).

Proof. For each s ∈ {0, ..., t− 1}, let

νs(∞) := νLX, t−1−s(y)(∞),

and let

ν−s := ν−LX, t−1−s(y)
.

Let c4 be as in Lemma 11.

25of Chapter 3
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By Definitions 8 and 9, we have that

LX(y) =

Lt(y) +
t−1∑
s=0

Ls
νs(∞)∑

k=0

Xt−1−s(k) · (eν−s (k)+1 − eν−s (k))

 =

Lt(y) +
t−1∑
s=0

νs(∞)∑
k=0

Xt−1−s(k) · Ls(eν−s (k)+1 − eν−s (k)),

so by Fact 1 and Definition 11,

i∑
j=i−B

[LX(y)(j)− Lt(y)(j)] =

i∑
j=i−B

t−1∑
s=0

νs(∞)∑
k=0

Xt−1−s(k) · Ls(eν−s (k)+1 − eν−s (k))(j) =

t−1∑
s=0

νs(∞)∑
k=0

Xt−1−s(k) ·
i∑

j=i−B

Ls(eν−s (k)+1 − eν−s (k))(j) =

t−1∑
s=0

νs(∞)∑
k=0

Xt−1−s(k) ·
i∑

j=i−B

∞∑
j′=0

q−s
(

s

j − j′

)
(q − a)j−j

′
as−j+j

′·

[eν−s (k)+1(j′)− eν−s (k)(j
′)] =

t−1∑
s=0

νs(∞)∑
k=0

Xt−1−s(k) · q−s ·
i∑

j=i−B

[

(
s

j − ν−s (k)− 1

)
(q − a)j−ν

−
s (k)−1as−j+ν

−
s (k)+1−(

s

j − ν−s (k)

)
(q − a)j−ν

−
s (k)as−j+ν

−
s (k)] =

t−1∑
s=0

νs(∞)∑
k=0

Xt−1−s(k) · q−s · [
(

s

i−B − ν−s (k)− 1

)
(q − a)i−B−ν

−
s (k)−1as−i+B+ν−s (k)+1−(

s

i− ν−s (k)

)
(q − a)i−ν

−
s (k)as−i+ν

−
s (k)] =

t−1∑
s=0

q−s ·
νs(∞)∑
k=0

Xt−1−s(k) · [Ds
B+1(i− ν−s (k))];
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thus in particular∣∣∣∣∣
i∑

j=i−B

[LX(j)− Lt(j)]

∣∣∣∣∣ ≤
t−1∑
s=0

q−s ·

∣∣∣∣∣∣
νs(∞)∑
k=0

Xt−1−s(k) ·Ds
B+1(i− ν−s (k))

∣∣∣∣∣∣ . (5.1)

Note also that

• for any k ∈ {0, ..., ν0(∞)}, D0
B+1(i− ν−0 (k)) =

±1 if i = ν−0 (k) or i = ν−0 (k) +B + 1

0 otherwise;

• for any integer j, there are at most 2q − 2 integers k s.t. ν−s (k) = j;

and thus

q−0 ·

∣∣∣∣∣∣
ν0(∞)∑
k=0

Xt−1−0(k) ·D0
B+1(i− ν−0 (k))

∣∣∣∣∣∣ ≤
max(q − a, a) · (4q − 4) ≤ 4q2. 26 (5.2)

Now if B + 1 ≤
√
t

2
, then 4q2 ≤ 4q2 · (B + 1) ln( t

(B+1)2
), so by (5.1) and (5.2)

it suffices to show that

t−1∑
s=1

q−s ·

∣∣∣∣∣∣
νs(∞)∑
k=0

Xt−1−s(k) ·Ds
B+1(i− ν−s (k))

∣∣∣∣∣∣ ≤
4q2 · c4 ·min((B + 1) ln(

t

(B + 1)2
), 2
√
t).

To do this, it suffices to show that, for s ∈ {1, ..., t− 1},

q−s ·

∣∣∣∣∣∣
νs(∞)∑
k=0

Xt−1−s(k) ·Ds
B+1(i− ν−s (k))

∣∣∣∣∣∣ ≤ 4q2 · c4 · min

(
B + 1

s
,

1√
s

)
, (5.3)

26We could actually do better here by being more careful.
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since

([B+1]/2)2−1∑
s=1

1√
s

+
t−1∑

s=([B+1]/2)2

B + 1

s
≤ (B + 1)

[
1 + ln(

4t

(B + 1)2
)

]
if B + 1 ≤

√
t

2

and
t−1∑
s=1

1√
s
≤ 2
√
t.

To prove (5.3), it suffices to show that, for s ∈ {1, ..., t− 1},

q−s ·

∣∣∣∣∣∣
νs(∞)∑
k=0

Xt−1−s(k) ·Ds
B+1(i− ν−s (k))

∣∣∣∣∣∣ ≤ 4q2 ·max{
∣∣Ds

B+1(j)
∣∣ : j ∈ Z}, (5.4)

by Lemma 11. This will now be done.

Consider a fixed s ∈ Z+. Then

• i− ν−s (k) is monotone on {0, ..., νs(∞)} as a function of k by Definition 5;

• Ds
B+1(j) is bimodal on Z as a function of j by Lemma 9;

• therefore Ds
B+1(i− ν−s (k)) is bimodal on {0, ..., νs(∞)} as a function of k.27

Let k1, k2 be s.t., as a function of k, Ds
B+1(i−ν−s (k)) is monotone on {0, ..., k1q−

1}, {(k1 + 1)q, ..., k2q − 1}, and {(k2 + 1)q, ..., νs(∞)}. Let k0 := −1, and let

k3 := bνs(∞)
q
c+ 1; then ∣∣∣∣∣∣

νs(∞)∑
k=0

Xt−1−s(k) ·Ds
B+1(i− ν−s (k))

∣∣∣∣∣∣ ≤
∣∣∣∣∣
k3q−1∑
k=0

Xt−1−s(k) ·Ds
B+1(i− ν−s (k))

∣∣∣∣∣+
(q − 1) max(q − a, a) ·max{

∣∣Ds
B+1(j)

∣∣ : j ∈ Z} ≤

27We use the term “bimodal” here in the sense of Lemma 9.
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∣∣∣∣∣
k1q−1∑
k=0

Xt−1−s(k) ·Ds
B+1(i− ν−s (k))

∣∣∣∣∣+
qmax(q − a, a) ·max{

∣∣Ds
B+1(j)

∣∣ : j ∈ Z}+∣∣∣∣∣∣
k2q−1∑

k=(k1+1)q

Xt−1−s(k) ·Ds
B+1(i− ν−s (k))

∣∣∣∣∣∣+
qmax(q − a, a) ·max{

∣∣Ds
B+1(j)

∣∣ : j ∈ Z}+∣∣∣∣∣∣
k3q−1∑

k=(k2+1)q

Xt−1−s(k) ·Ds
B+1(i− ν−s (k))

∣∣∣∣∣∣+
qmax(q − a, a) ·max{

∣∣Ds
B+1(j)

∣∣ : j ∈ Z} ≤

∣∣∣∣∣∣
k1q−1∑

k=(k0+1)q

Xt−1−s(k) ·Ds
B+1(i− ν−s (k))

∣∣∣∣∣∣+∣∣∣∣∣∣
k2q−1∑

k=(k1+1)q

Xt−1−s(k) ·Ds
B+1(i− ν−s (k))

∣∣∣∣∣∣+∣∣∣∣∣∣
k3q−1∑

k=(k2+1)q

Xt−1−s(k) ·Ds
B+1(i− ν−s (k))

∣∣∣∣∣∣+
3q2 ·max{

∣∣Ds
B+1(j)

∣∣ : j ∈ Z}. 28 (5.5)

Now since

• Ds
B+1(i− ν−s (k)) is monotone on {(k0 + 1)q, ..., k1q − 1},

{(k1 + 1)q, ..., k2q − 1}, and {(k2 + 1)q, ..., k3q − 1} as a function of k, and

• for each b ∈ {0, 1, 2},
∑kb+1q

k=(kb+1)q Xt−1−s(k) ·Ds
B+1(i− ν−s (k)) is between

kb+1∑
k=kb+1

[
q − a
q

a−1∑
l=0

Ds
B+1(i− ν−s (kq + l))+

a

q

q−1∑
l=a

Ds
B+1(i− ν−s (kq + l))]

28Note that k3 could be infinite, and the argument still works.
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and

kb+1∑
k=kb+1

[
q − a
q

q−1∑
l=q−a

Ds
B+1(i− ν−s (kq + l))+

a

q

q−a−1∑
l=0

Ds
B+1(i− ν−s (kq + l))]

(since X is a legal response sequence to y),

it follows that expression (5.5) is less than or equal to

≤ (3 max(q − a, a) + 3q2) max{
∣∣Ds

B+1(j)
∣∣ : j ∈ Z} ≤

4q2 ·max{
∣∣Ds

B+1(j)
∣∣ : j ∈ Z},

proving (5.4).

The above argument is based on the idea that, for nonnegative integers i, s

with s < t, the contribution of the (t−s)th state to
∑i

j=i−B[LX(j)−Lt(j)] is equal to

q−s ·
∑νs(∞)

k=0 Xt−1−s(k) ·Ds
B+1(i− ν−s (k)) (as in (5.1)). In the above proof, we use the

bimodality of DB+1 and the “alternating” structure of the Xt−1−s values to bound∣∣∣∑i
j=i−B[LX(j)− Lt(j)]

∣∣∣ below a constant times q−s · max{
∣∣Ds

B+1(j)
∣∣ : j ∈ Z}, but

since DB+1(i− ν−s (k)) = 0 whenever i− ν−s (k) ≤ −1, we could just as easily use the

bound

q−s max{
∣∣Ds

B+1(j)
∣∣ : j ∈ Z, 0 ≤ j ≤ i}. (5.6)

We briefly sketch what would happen for small i.

If j ≤ i ≤ ( q−a
q
− ε)s for some constant ε, then |Ds

B+1(j)| is bounded above

by a constant times 1√
s
qHq,a( q−a

q
−ε)·s, by the Stirling approximation and Fact 6 (this

constant is actually uniform in B because of our constraint B ≥ 0). By Fact 7,

Hq,a(
q−a
q
− ε) < 1, so that q−s · Ds

B+1(j) shrinks exponentially quickly as s → ∞.

Thus, for a given i,
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• the total contribution from the (t − s)th states with s ≥ i/
(
q−a
q
− ε
)

are

bounded above in absolute value by a constant (which can be taken to be

decreasing in i), and

• the total contribution from the (t − s)th states with s < i/
(
q−a
q
− ε
)

are

bounded above in absolute value by a constant times


c5 ·

√
i

2
if B + 1 ≥

√
i

2

≤ c5 · (B + 1) · ln(i/(B + 1)2) if B + 1 ≤
√
i

2

(5.7)

as in the above lemma,

so the total contribution is bounded above by (5.3).

Such an observation may be of use in versions of Game 1, since in this case it

is the messages with low error count that worry us the most.
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CHAPTER 6

THE MAIN RESULT

In Section 6.1, we will have two objectives. Fact 13 says that the pointwise

number of chips in the linear machine is much greater than the difference between the

liar machine and the linear machine. Fact 15 extends Lemma 4 to give an interval-wise

lower bound on the number of chips in the linear machine. We will then prove our

main result in Section 6.2.

Section 6.1 generalizes Lemmas 9,10,11, and 15 of Cooper and Ellis; Section

6.2 generalizes their Theorem 26 [Cooper and Ellis, 2010].

Recall throughout that f < q−a
q

, and that we make use of the entropy function

from Definition 10.

6.1 Preliminaries

Fact 13. Let κ be an element of (0, 1). Suppose that, for each positive integer n,

nonnegative integers n1 and n2 are defined s.t. n1+n2 = n and n1

n
≥ κ for n sufficiently

large. Then

qn(
n
bfnc

)
(q − a)bfncan−bfnc

(
n
bfn1c

)
(q − a)bfn1can1−bfn1c

qn1
= Θ(q[1−Hq,a(f)]·n2).

Proof. By the Stirling approximation, for each n′ ∈ {n, n1}, qn
′

( n′
bfn′c)(q−a)bfn′can′−bfn′c

is

between

Θ

(
qn
′ 1√
n′

(fn′ − 1)fn
′−1(n′ − fn′ + 1)n

′−fn′+1

n′n′(q − a)fn′−1an′−fn′+1

)
and

Θ

(
qn
′ 1√
n′

(fn′ + 1)fn
′+1(n′ − fn′ − 1)n

′−fn′−1

n′n′(q − a)fn′+1an′−fn′−1

)
;

now each of the above two expressions is equal to

Θ

(
qn
′ 1√
n′

(fn′)fn
′
(n′ − fn′)n′−fn′

n′n′(q − a)fn′an′−fn′

)
= Θ

(
1√
n′
q[1−Hq,a(f)]·n′

)
,
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so

qn(
n
bfnc

)
(q − a)bfncan−bfnc

(
n
bfn1c

)
(q − a)bfn1can1−bfn1c

qn1
=

√
n1√
n
· Θ(q[1−Hq,a(f)]·n)

Θ(q[1−Hq,a(f)]·n1)
= Θ(q[1−Hq,a(f)]·n2).

Fact 14.

(a) For each positive integer n,
(

n
0...bfnc

)
q,a
≤ (1−f)(q−a)

(1−f)(q−a)−fa ·
(

n
bfnc

)
(q − a)bfncan−bfnc.

(b) Suppose that, for each positive integer n, a nonnegative integer n3 is defined

s.t. n3 = ω(1). Then
(

n
0...bfnc

)
q,a

= [1− o(1)] ·
(

n
bfnc−n3...bfnc

)
q,a
.

Proof. For k ∈ {0, ..., bfnc},(
n

bfnc−k

)(
n
bfnc

) =
bfnc!(n− bfnc)!)

(bfnc − k)!(n− bfnc+ k)!
≤ bfnck

(n− bfnc+ 1)k
≤ (fn)k

(n− fn)k
,

so since f < q−a
q

,(
n

bfnc−k

)
(q − a)bfnc−kan−bfnc+k(

n
bfnc

)
(q − a)bfncan−bfnc

≤ [fa]k

[(1− f)(q − a)]k
< 1; (6.1)

thus in particular (
n

0...bfnc

)
q,a

=

bfnc∑
j=0

(
n

j

)
(q − a)jan−j ≤

[(
n

bfnc

)
(q − a)bfncan−bfnc

]
·
bfnc∑
k=0

(
fa

(1− f)(q − a)

)k
≤

(1− f)(q − a)

(1− f)(q − a)− fa
·
(

n

bfnc

)
(q − a)bfncan−bfnc,

proving (a). Letting n3 be as in (b), we have also by 6.1 (and the fact that since
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f < q−a
q

) that

(
n

0...bfnc − n3

)
q,a

=

bfnc−n3∑
j=0

(
n

j

)
(q − a)jan−j ≤

[(
n

bfnc

)
(q − a)bfncan−bfnc

]
·
bfnc∑
k=n3

(
fa

(1− f)(q − a)

)k
≤(

fa

(1− f)(q − a)

)n3

· (1− f)(q − a)

(1− f)(q − a)− fa
·
(

n

bfnc

)
(q − a)bfncan−bfnc;

thus the right-hand side of the above expression is equal to

o(1) ·
(

n
bfnc

)
(q − a)bfncan−bfnc, so(

n

0...bfnc

)
q,a

=

(
n

0...bfnc − n3

)
q,a

+

(
n

bfnc − n3...bfnc

)
q,a

=

o(1) ·
(

n

bfnc

)
(q − a)bfncan−bfnc +

(
n

bfnc − n3...bfnc

)
q,a

=

o(1) ·
(

n

0...bfnc

)
q,a

+

(
n

bfnc − n3...bfnc

)
q,a

,

proving (b).

Lemma 15. Let κ be an element of (f, 1). Suppose that, for each positive integer n,

nonnegative integers n1 and n2 are defined s.t. n1 + n2 = n, n1

n
≥ κ for n sufficiently

large, and n2 = ω(1). Then

bfnc∑
i=bfn1c

i∑
j=bfn1c

(
n1

j

)(
n2

i− j

)
(q − a)ian−i ≥ [

1

2
− o(1)] ·

bfnc∑
i=0

(
n

i

)
(q − a)ian−i.

Proof. For n ∈ Z+,

• let λ := 12
fκ(κ−f)

;

• let γ̄(n) := 1√
n2

; then γ̄(n) = o(1) and γ̄(n) · n2 = ω(1);

• let δ̄(n) :=
√

min(γ̄(n) · n2, log1−λ·γ̄(n)
1
2
;

• let n3 := dδ̄(n) + 1
κ
e; then n3 = ω(1);
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then by Lemma 4, for n sufficiently large and any integer i := bfn1c + r ≤

n s.t. 0 ≤ r and fn2 − n3 ≤ r,29

i∑
j=bfn1c

(
n1

j

)(
n2

i−j

)(
n
i

) ≥ 1

2
− 8

δ̄(n)
;

thus

bfnc∑
i=bfn1c

i∑
j=bfn1c

(
n1

j

)(
n2

i− j

)
(q − a)ian−i ≥

bfnc∑
i=bfnc−n3

i∑
j=bfn1c

(
n1

j

)(
n2

i− j

)
(q − a)ian−i ≥

bfnc∑
i=bfnc−n3

(
n

i

)
· [1

2
− 8

δ̄(n)
] · (q − a)ian−i =

[
1

2
− o(1)] ·

bfnc∑
i=bfnc−n3

(
n

i

)
· (q − a)ian−i;

by 14 (b) and since n3 = ω(1), the above expression is equal to

[
1

2
− o(1)] ·

bfnc∑
i=0

(
n

i

)
(q − a)ian−i.

6.2 Proof of the Main Theorem

We are now ready to state a stronger version of our main result Theorem 0:

Theorem 16. Let q, a be positive integers with a < q and f be an element of (0, q−a
q

).

Let c5 be as in Lemma 12. For each positive integer n, let n2 := b 1
1−Hq,a(f)

logq(ln(n))c

and let n1 := n − n2. Then the following holds for every sufficiently large integer n

and every integer M s.t. M ≥ 3c5 ·
√
n2 · qn

( n
0...bfnc)q,a

:

29and thus bfnc ≤ bfn1c+ dfn2e ≤ bfn1c+ r + n3 = i+ n3
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Let y0 be the vector, indexed by the nonnegative integers, s.t. y0(0) = M and

y0(i) = 0 for each i ∈ Z+. Let X be a legal response sequence to y0 with length n.

Then
∑bfnc

i=bfn1c LX(y0)(i) ≥ 1. 30

Proof. We will use Fact 1 several times without reference.

For j ∈ {bfn1c, ..., bfnc},

Ln1(y0)(j) = M

(
n1

j

)
(q − a)jan1−j

qn1
;

now if n is sufficiently large that q−a
q

n1

n
≥ f , then we have by the Stirling

approximation and Fact 6 that (
n1

j

)
(q − a)jan1−j

qn1
≥

Θ(1) ·
√
n1√
n

(
n1

bfn1c

)
(q − a)bfn1can1−bfn1c

qn1
≥

Θ(1) ·

(
n1

bfn1c

)
(q − a)bfn1can1−bfn1c

qn1
,

so by Facts 13 and 14(a),

Ln1(y0)(j) ≥
√
n2 ·Θ

(
q[1−Hq,a(f)]·n2

)
= ω(1) · ln(n),

so by Lemma 12 (with B = 0),

LX, n1(y0)(j) ≥

[1− c5 ln(n)

ω(1) ln(n)
] ·M ·

(
n1

j

)
(q − a)jan1−j

qn1
=

[1− o(1)] ·M ·
(
n1

j

)
(q − a)jan1−j

qn1
(6.2)

where the ω(1) and o(1) functions are uniform in j.

30We could replace the factor of 3c5 in our hypothesis with (2 + o(1))c5, where
the o(1) function is the same as appears in Lemma 15 .
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Let y := LX, n1(y0). Then for i ∈ {bfn1c, ..., bfnc},

Ln2(y)(i) ≥
i∑

j=bfn1c

y(j)

(
n2

i−j

)
(q − a)i−jan2−i+j

qn2
;

by (6.2), this is greater than or equal to

[1− o(1)] · M
qn
·

i∑
j=bfn1c

(
n1

j

)(
n2

i− j

)
(q − a)ian−i,

where the o(1) function is again uniform in j; thus

bfnc∑
i=bfn1c

Ln2(y)(i) ≥

[1− o(1)] · M
qn
·
bfnc∑

i=bfn1c

i∑
j=bfn1c

(
n1

j

)(
n2

i− j

)
(q − a)ian−i;

by Lemma 15, the above expression is greater than or equal to

[1− o(1)] · M
qn
· [1

2
− o(1)] ·

bfnc∑
i=0

(
n

i

)
(q − a)ian−i,

and by the definition of M this expression is greater than or equal to

c5 · [
3

2
− o(1)] ·

√
n2.

Thus by Lemma 12 (with B = bfnc − bfn1c), and for n large enough that

bfnc − bfn1c ≥
√
n2

2
,

bfnc∑
i=bfn1c

LX(y0)(i) ≥ bfnc∑
i=bfn1c

Ln2(y)(i)

− c5 ·
√
n2 ≥

c5 ·
√
n2 · (

3

2
− o(1)− 1) = ω(1);

for n large enough the above expression is ≥ 1, as desired.
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Since LX(y′) is an integer vector whenever y′ is an integer vector and X is a

legal response sequence to y′, this implies that at least one coordinate of LX(y0) is at

least 1.

• Since LX(y0)(i) describes, for each legal response sequence X to y and each

nonnegative integer i, the number of messages with error count i after Carole

gives the sequence of answers corresponding to X, and

• since any allowed sequence of answers by Carole corresponds to a legal response

sequence to y,

we now have Theorem 0.
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APPENDIX A

GUIDE TO CITED RESULTS
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All unmarked references in this appendix are to the version of Siegel’s paper

[Siegel, 2001] appearing in ”Journal of Algorithms,” vol. 38.

A.1 Correcting Typos

There are some typos in Siegel’s paper on median bounds [Siegel, 2001] that

are of relevance to our arguments, which we list below. We will violate some rules of

punctuation for clarity.

(i) Near the top of p.201, in the statement of Theorem 2.4 (beginning on p.200), in

the expression “b1′) The density f ′”, the expression “f ′” should be changed to

“f”.

(ii) In the second-to-last sentence of the proof discussion for Corollary 2.3 (p.203),

the expression “T+
 (t)” should be changed to “T+

 ”.

(iii) In the second sentence of the proof of Corollary 2.3 (appendix A.3, p.221), the

expression “T+
 (t)” should be changed to “T+

 ”.

(iv) In the fifth centered equation line on p.221, the expression “ln(R − b)” should

be changed to “ln(R− r)”.

(v) In the second-to-last centered equation line on p.221, a “?” appears immediately

after the “≥” sign (at least in our .pdf reader). This “?” should be deleted.

(vi) In the first centered equation line on p.222, a “?” appears immediately after the

“≥” sign (at least in our .pdf reader). This “?” should be deleted.
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A.2 Generalizing Corollary 2.3

Our Lemma 2 is a tiny generalization of Siegel’s formulation [Siegel, 2001,

Corollary 2.3, p. 203]. This generalization was noted by Cooper and Ellis [Cooper

and Ellis, 2010, Theorem 12]. Though stated slightly differently here, our statement

is equivalent to that of Cooper and Ellis. Siegel’s formulation is proven in his paper

[Siegel, 2001, Appendix A.3, pp. 221-222]. The necessary prerequisites for this proof

are discussed in Appendix A.3.

Siegel’s proof can be converted to a proof of our more general statement by

the following trivial steps:

(i) Correct the typos in Siegel’s paper according to Appendix A.1.

(ii) In the second-to-last sentence of the proof discussion on p.203, change b to dbe.

(iii) In the proof of Corollary 2.3 (beginning on p.221), change b to dbe and r to dre.

(iv) In the fifth centered equation line on p.221, change the final = to ≤.

(v) Replace the third sentence after the fifth centered equation line on p.221 (beginning

“[s]ubstituting w for w ”) with the following sentences: “Substituting w for w 

gives e−wt

1−e−wt = B−dbe
dbe , which has the unique solution t = ρ := 1

w
(ln(B)− ln(B −

dbe)). Using the fact that dbe ≥ B(1−e−w) gives 1
w

(ln(B)−ln(B−dbe)) ≥ 1 > µ,

and thereby fulfills requirement (a2).”

(vi) On pp.221-222, change all instances of (2−t) to (2ρ−t) and change all instances

of (0, 1) to (0, ρ).

(vii) In the last centered equation line on p.221 and the third-to-last centered equation

line on p.222, in the fourth equation and the second-to-last equation, change

e−w

1−e−w to B−dbe
dbe .
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(viii) Delete the first line of text below the last centered equation line on p.221. In

the subsequent line, change “t = 1” to “t = ρ.”

A few additional points should be noted during the “conversion process”:

(i) Siegel’s proof (and ours) depends on other results within his paper. See Appendix

A.3 for a guide to the necessary prior results.

(ii) The fourth centered equation line on p.221 holds with r replaced by any non-

negative integer ≤ R in this equation as well as the Definition of F# (on the

second centered equation line on p.221). It can be verified by two integrations

by parts.

(iii) Shortly below the third centered equation line on p.221, reference is made to

condition b1′, which is stated at the top of p.201 in the statement of Theorem

2.4. Verification that the function f satisfies condition b1′ is left to the reader.

In fact, we will verify that f satisfies condition b1′ when r is replaced by any

nonnegative integer s ≤ r in the Definition of F# (on the second centered equation

line on p.221) and µ is replaced by any nonnegative real number in the Definition of

b1′ (at the top of p.201 in the statement of Theorem 2.4, which begins on p.200). For

t ∈ (0, 2µ),

f(t) = F ′(t) =
R∑
j=s

(
R

j

)
[w# · j · (1− exp(−w#t))j−1(exp(−w#t))R−j+1−

w# · (R− j) · (1− exp(−w#t))j(exp(−w#t))R−j] =

w# ·
R∑
j=s

[R ·
(
R− 1

j − 1

)
exp(−w#t)(1− exp(−w#t))j−1(exp(−w#t))(R−1)−(j−1)−

R ·
(
R− 1

j

)
exp(−w#t)(1− exp(−w#t))j(exp(−w#t))(R−1)−j] =
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w#R · (

[
R−1∑
j=s−1

(
R− 1

j

)
exp(−w#t)(1− exp(−w#t))j(exp(−w#t))(R−1)−j

]
−[

R ·
R∑
j=s

(
R− 1

j

)
exp(−w#t)(1− exp(−w#t))j(exp(−w#t))(R−1)−j

]
) =

w#R ·
(
R− 1

s− 1

)
(1− exp(−w#t))s−1(exp(−w#t))R−s+1;

thus

f ′(t)

f(t)
= (s− 1)w# ·

exp(−w#t)
1− exp(−w#t)

− (R− s+ 1)w#,

so

f ′(t)

f(t)
+
f ′(2µ− t)
f(2µ− t)

=

(s− 1)w# · [
exp(−w#t)

1− exp(−w#t)
+

exp(−w#(2µ− t))
1− exp(−w#(2µ− t))

]− 2(R− s+ 1)w#. (A.1)

Now as a function of t, the right-hand side of equation (A.1) has derivative

(s− 1)w# · [−w#
exp(−w#t)

(1− exp(−w#t))2
+ w#

exp(−w#(2µ− t))
(1− exp(−w#(2µ− t)))2

] =

(s− 1)w2
# · [−

1

(1− exp(−w#t))2
+

1

(1− exp(−w#(2µ− t)))2
],

which is strictly increasing in t for t ∈ (0, 2µ). Thus the right-hand side of equation

(A.1) has at most two zeroes in (0, 2µ) as a function of t.
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A.3 Understanding Corollary 2.3

We briefly trace the prerequisites for Siegel’s proof of his Corollary 2.3 [Siegel,

2001, Corollary 2.3, p. 203].

Corollary 2.3 is stated and discussed on p.203, and proven in Appendix A3 on

pp.221-222. This proof depends on Theorem 2.4, which is stated on pp.200-201 and

proven in Appendix A.2 on pp.219-220. Theorem 2.4, in turn, depends on Theorem

2.1 and Lemma 2.1, which are stated and proven on pp.190-191.



52

APPENDIX B

WRITING CONVENTIONS
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The following information may be useful to the reader:

Level of Formality Each of our formal statements is made either

• within a proof (which begins with “Proof.” and ends with “�”) or

• in italics, headed by one of the words “Definition,” “Convention,”

“Game,” “Fact,” “Lemma,” or “Theorem,” and terminated by the

first non-italic word after the heading.

Any other statements should not be taken as definitions or as contributing

substantively to any of our arguments; they are for purely explanatory purposes.

Definitions of Symbols

• Some symbol definitions change from section to section as additional

constraints are progressively added to them. Definitions given in examples,

or in the statement or proof of a result do not extend beyond that comment

or result. Labeled definitions and conventions, on the other hand, should

be considered to persist throughout the thesis until they are changed.

• All Landau notation in this thesis (big-O, little-o, big-Ω, little-ω, big-Θ)

is as n→∞ and n ∈ Z+.

• Given a real number j′, the “sign of j′” means


−1 if j′ < 0

0 if j′ = 0

1 if j′ > 0

.

• A real number j′ is “between” real numbers i′ and k′ if either i′ ≤ j′ ≤ k′

or k′ ≤ j′ ≤ i′.

• We occasionally discuss random variables without explicitly defining the

probability space on which they are defined. We will invariably assume

that the probability space is equal to (S, 2S,Pr), where S is a finite set
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and Pr is a probability measure on 2S. For a proposition P with domain

S we will use “Pr{P}” to denote Pr({σ ∈ S s.t. P (σ) is true}).
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APPENDIX C

STATEMENT ON COLLABORATION
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This work forms part of a collaboration with James Williamson. His forthcoming

M.S. thesis [Williamson, 2012] and this paper cover complementary topics, each

extending a different portion of the results of Cooper and Ellis [Cooper and Ellis,

2010]. We remained in communication with each other as I wrote this paper, harmonizing

a good deal of our notation and coordinating our research objectives to prevent

duplication of effort. His thesis refers to several results from this paper. The main

Theorem 16 of this paper is essentially a stronger version of his main Theorem

3 [Williamson, 2012], although his argument differs from mine.
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