Random Geometric Graph Diameter in the Unit Disk with ℓ_{p} Metric (Extended Abstract)

Robert B. Ellis ${ }^{1, \star}$, Jeremy L. Martin ${ }^{2, \star \star}$, and Catherine Yan $^{1, \star \star \star}$
${ }^{1}$ Department of Mathematics, Texas A\&M University, College Station, TX 77843-3368, USA,
rellis@math.tamu.edu, cyan@math.tamu.edu,
${ }^{2}$ School of Mathematics, University of Minnesota, 206 Church St. SE, Minneapolis, MN 55455, USA
martin@math.umn.edu

Abstract

Let n be a positive integer, and $\lambda>0$ a real number. Let V_{n} be a set of n points randomly located within the unit disk, which are mutually independent. For $1 \leq p \leq \infty$, define $G_{p}(\lambda, n)$ to be the graph with the vertex set V_{n}, in which two vertices are adjacent if and only if their ℓ_{p}-distance is at most λ. We call this graph a unit disk random graph. Let $\lambda=c \sqrt{\ln n / n}$ and let X be the number of isolated points in $G_{p}(\lambda, n)$. Let a_{p} be the (constant) ratio of the area of the ℓ_{p}-ball to the ℓ_{2}-ball of the same radius. Then, almost always, $X=0$ when $c>a_{p}^{-1 / 2}$, and $X \sim n^{1-a_{p} c^{2}}$ when $c<a_{p}^{-1 / 2}$. Penrose proved that with probability approaching 1 , the graph $G_{p}(\lambda, n)$ is connected when it has minimum degree 1. We extend Penrose's method to prove that if $G_{p}(\lambda, n)$ is connected, then there exists a constant K, independent of p, such that the diameter of $G_{p}(\lambda, n)$ is bounded above by K / λ. We show in addition that when c exceeds a certain constant depending on p, the diameter of $G_{p}(\lambda, n)$ is bounded above by $\left(2 \cdot 2^{1 / 2+1 / p}+o(1)\right) / \lambda$. More generally, there is a function $c_{p}(\delta)$ such that the diameter is at most $2^{1 / 2+1 / p}(1+\delta+o(1)) / \lambda$ when $c>c_{p}(\delta)$.

1 Introduction

Let D be the unit disk in \mathbb{R}^{2} and n a positive integer. Let V_{n} be a set of n points in D, distributed independently and uniformly with respect to the usual Lebesgue measure on \mathbb{R}^{2}. For $p \in[1, \infty]$, the ℓ_{p} metric on \mathbb{R}^{2} is defined by

$$
d_{p}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)= \begin{cases}\left(\left|x_{2}-x_{1}\right|^{p}+\left|y_{2}-y_{1}\right|^{p}\right)^{1 / p} & \text { for } p \in[1, \infty) \\ \max \left\{\left|x_{2}-x_{1}\right|,\left|y_{2}-y_{1}\right|\right\} & \text { for } p=\infty\end{cases}
$$

[^0]For $\lambda \in(0, \infty)$, the unit disk random graph $G_{p}(\lambda, n)$ on the vertex set V_{n} is defined by declaring two vertices $u, v \in V_{n}$ to be adjacent if and only if $d_{p}(u, v) \leq$ λ. Beside their purely graph-theoretical interest, unit disk random graphs have important applications to wireless communication networks; see, e.g., $[1,2, ?]$.

The first and third authors along with with X. Jia studied the case $p=2$ in [3]. In this extended abstract, we generalize some of the results of that article to arbitrary p : namely, those concerning the threshold for connectedness and bounds on the graph diameter. Complete results with proofs will be included in [4].

We will say that $G_{p}(\lambda, n)$ has a property P almost always if

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[G_{p}(\lambda, n) \text { has the property } P\right]=1
$$

For the purpose of stating the results of the paper, we begin with some geometry. Denote by $B_{p}(u, r)$ the ℓ_{p}-ball of radius r about $u \in \mathbb{R}^{2}$. It is not hard to show that the area of $B_{p}(u, r)$ is $4 r^{2} \Gamma((p+1) / p)^{2} / \Gamma((p+2) / p)$. We omit the calculation, which uses the beta function; see [5, §12.4]. An important quantity in our work will be the ratio

$$
a_{p}:=\frac{\operatorname{Area}\left(B_{p}(u, r)\right)}{\operatorname{Area}\left(B_{2}(u, r)\right)}=\frac{4 \Gamma\left(\frac{p+1}{p}\right)^{2}}{\pi \Gamma\left(\frac{p+2}{p}\right)}
$$

Another elementary calculation shows that the ℓ_{p}-diameter of the unit disk D is

$$
\operatorname{diam}_{p}(D):=\max _{u, v \in D}\left\{d_{p}(u, v)\right\}=\left\{\begin{array}{r}
2^{1 / 2+1 / p}, 1 \leq p<2 \\
2, p \geq 2
\end{array}\right.
$$

The diameter is achieved by the points $(\sqrt{2} / 2, \sqrt{2} / 2)$ and $(-\sqrt{2} / 2,-\sqrt{2} / 2)$ when $1 \leq p \leq 2$, and by $(0,1)$ and $(0,-1)$ when $p \geq 2$.

In Sect. 2, we show that almost always, $G_{p}(\lambda, n)$ has $n^{1-a_{p} c^{2}}(1+o(1))$ isolated vertices when $c<a_{p}^{-1 / 2}$ and no isolated vertices when $c>a_{p}^{-1 / 2}$. Penrose [6] has shown that almost always, $G_{p}(\lambda, n)$ is connected when it has no isolated points; combining this with our result, it follows that when $\lambda=c \sqrt{\ln n / n}$ and $c>a_{p}^{-1 / 2}$, the graph $G_{p}(\lambda, n)$ is almost always connected. In Sect.3, we show that when $G_{p}(\lambda, n)$ is connected, its diameter ${ }^{3}$ is almost always $\leq K / \lambda$, where $K \approx 387.17 \cdots$ is an absolute constant independent of p. In Sect. 4, we show that for c larger than a fixed constant, the graph diameter of $G_{p}(\lambda, n)$ is almost always $\leq 2 \cdot \operatorname{diam}_{p}(D)(1+o(1)) / \lambda$. In fact, there is a function $c_{p}(\delta)>0$ with the following property: almost always, if $c>c_{p}(\delta)$, then the diameter of $G_{p}(\lambda, n)$ is at $\operatorname{most}^{\operatorname{diam}}(D)(1+\delta+o(1)) / \lambda$.

[^1]
2 Isolated Vertices

Theorem 1. Let $1 \leq p \leq \infty$, let $\lambda=c \sqrt{\ln n / n}$, and let X be the number of isolated vertices in the unit disk random graph $G_{p}(\lambda, n)$. Then, almost always,

$$
X=\left\{\begin{array}{ll}
0 & \text { when } c>a_{p}^{-1 / 2} \\
n^{1-a_{p} c^{2}}(1+o(1)) & \text { when } 0<c<a_{p}^{-1 / 2}
\end{array} .\right.
$$

We sketch the proof, which uses the so-called second moment method [7] to show that the expected number of isolated vertices is $\mathbb{E}[X]=n^{1-a_{p} c^{2}}$, and that its variance is $v a r \operatorname{Var}[X]=o\left(\mathbb{E}[X]^{2}\right)$. When $c<a_{p}^{-1 / 2}$, an application of Chebyshev's inequality yields $X=n^{1-a_{p} c^{2}}(1+o(1))$. Let A_{i} be the event that vertex v_{i} has degree 0 . Then

$$
\frac{a_{p}}{2} \pi \lambda^{2}(1+O(\lambda)) \leq \operatorname{Area}\left(B_{p}\left(v_{i}, \lambda\right) \cap D\right) \leq a_{p} \pi \lambda^{2}
$$

where the lower (resp. upper) bound is achieved when $B_{p}\left(v_{i}, \lambda\right) \subseteq D$ (resp. $\left.B_{p}\left(v_{i}, \lambda\right) \nsubseteq D\right)$. Conditioning on the event that $B_{p}\left(v_{i}, \lambda\right) \subseteq D$, we have

$$
\left(1-a_{p} \lambda^{2}\right)^{n-1} \leq \operatorname{Pr}\left[A_{i}\right] \leq \operatorname{Pr}\left[B_{p}\left(v_{i}, \lambda\right) \subseteq D\right]\left(1-a_{p} \lambda^{2}\right)^{n-1}+\operatorname{Pr}\left[B_{p}\left(v_{i}, \lambda\right) \nsubseteq D\right]\left(1-\frac{a_{p}}{2} \lambda^{2}(1+O(\lambda))\right)^{n-1}
$$

By linearity of expectation, $\mathbb{E}[X]=n \cdot \operatorname{Pr}\left[A_{i}\right]=n^{1-a_{p} c^{2}}(1+o(1))$. The variance $\operatorname{Var}[X]$ is computed via $\operatorname{Pr}\left[A_{i} \wedge A_{j}\right]$, conditioned on $d_{p}\left(v_{i}, v_{j}\right)$. The rest of the proof is a straightforward computation.

Penrose [6, Theorem 1.1] proved that for every $t \geq 0$, the unit-cube random graph simultaneously becomes $(t+1)$-connected and achieves minimum degree $t+1$. Penrose's proof remains valid for the unit disk. The precise statement is as follows: for $t \geq 0$, almost always,
$\min \left\{\lambda \mid G_{p}(\lambda, n)\right.$ is $(t+1)$-connected $\}=\min \left\{\lambda \mid G_{p}(\lambda, n)\right.$ has minimum degree $\left.t+1\right\}$.
In the case $t=0$, combining Penrose's theorem with Theorem 1 yields the following.

Theorem 2. Let $1 \leq p \leq \infty$ and $\lambda=c \sqrt{\ln n / n}$. If $c>a_{p}^{-1 / 2}$, then, almost always, the unit disk random graph $G_{p}(\lambda, n)$ is connected.

3 Diameter of $G_{p}(\lambda, n)$ Near the Connectivity Threshold

Suppose that $G_{p}(\lambda, n)$ is connected by virtue of Theorem 2. In general, it will contain two vertices whose Euclidean distance is close to $\operatorname{diam}_{p}(D)$, so we conclude that the graph diameter of $G_{p}(\lambda, n)$ is at least $\operatorname{diam}_{p}(D) / \lambda$. It appears to be much more difficult to obtain an upper bound on diameter; however, the upper bound is a constant multiple of the lower bound, as we now explain.

Theorem 3. Let $1 \leq p \leq \infty$ and $\lambda=c \sqrt{\ln n / n}$, where $c>a_{p}^{-1 / 2}$. Suppose that $K>256 \sqrt{2}+8 \pi \approx 387.17 \ldots$ Then, almost always, the unit disk random graph $G_{p}(\lambda, n)$ has diameter $<K / \lambda$.

The proof is based on the following fact.
Proposition 1. Let $1 \leq p \leq \infty$, let $\lambda=c \sqrt{\ln n / n}$, and let $c>a_{p}^{-1 / 2}$. If $K_{0}>128 /(\pi \sqrt{2}) \sim 28.180 \cdots$, then $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[A_{n}\left(K_{0}\right)\right]=0$.

For any two points $u, v \in D$, define

$$
T_{u, v}(k):=\left(\text { convex closure of } B_{2}(u, k \lambda) \cup B_{2}(v, k \lambda)\right) \cap D
$$

and impose upon this lozenge-shaped region a grid of squares of side length proportional to λ. Let $A_{n}(k)$ be the event that there exist two points $u, v \in V_{n}$ such that (i) at least one of u, v point lies in $B_{2}(O, 1-(k+\sqrt{2}) \lambda)$, and (ii) there is no path of $G_{p}(\lambda, n)$ joining u to v that lies entirely inside $T_{u, v}(k)$. If the event $A_{n}(k)$ occurs, then by the argument of Penrose's theorem [6, p. 162], there exists a curve L separating v_{i} and v_{j} which intersects a large number of grid squares, none of which contains any vertex of V_{n} (see Fig. 1). Combining this fact with a Peierls argument as in [8, Lemma 3] leads to an upper bound on k :

Fig. 1. Two vertices $u, v \in V_{n}$ which are not connected by any path in $T_{u, v}(k)$, and the "frontier" L separating them.

Consider any pair of vertices $u, v \in V_{n}$. If K_{0} is large enough, then Proposition 1 guarantees the existence of a path from u to v inside $T_{u, v}\left(K_{0}\right)$. Comparing the total area of $T_{u, v}\left(K_{0}\right)$ to the area of the ℓ_{p}-balls around the vertices in a shortest path from u to v inside $T_{u, v}\left(K_{0}\right)$, one obtains the desired diameter bound on $G_{p}(\lambda, n)$. (Minor adjustments are needed if one or both of the vertices u, v is close to the boundary of D.) The following corollary will be used in the next section.

Corollary 1. Let $1 \leq p \leq \infty$ and $\lambda=c \sqrt{\ln n / n}$, where $c>a_{p}^{-1 / 2}$. Suppose that $K>256 \sqrt{2}+8 \pi \approx 387.17 \ldots$. Then, almost always, any two vertices u, v in the unit disk random graph $G_{p}(\lambda, n)$ are connected by a path of length at most $K d_{p}(u, v) / \lambda$ in $G_{p}(\lambda, n)$.

4 Diameter of $G_{p}(\lambda, n)$ for Larger c

In this section we obtain an upper bound for the diameter of the graph $G_{p}(\lambda, n)$ by means of a "spoke overlay construction." Roughly, a spoke consists of a number of evenly spaced, overlapping ℓ_{p}-balls whose centers lie on a diameter L of the unit disk D. We will superimpose several spokes on D so that the regions of intersection of the ℓ_{p}-balls are distributed fairly evenly around D. The idea is that if the constant c is large enough, then, almost always, every region of intersection contains at least one vertex of V_{n}, so that $G_{p}(\lambda, n)$ contains a path joining the antipodes of D on L. The length of this path, which may be calculated geometrically, will provide an upper bound for the diameter of $G_{p}(\lambda, n)$.

Definition 1 (Spoke construction). Fix $1 \leq p \leq \infty, \theta \in(-\pi / 2, \pi / 2]$, and $r>0$. Let D be the Euclidean unit disk. For $m \in \mathbb{Z}$, put

$$
u_{m}=u_{m}(r, \theta)=((r / 2+r m) \cos \theta,(r / 2+r m) \sin \theta) \in \mathbb{R}^{2}
$$

We now define the corresponding spoke as the point set $U_{p, \theta}(r)=\left\{u_{m}\right\} \cap D$, together with an ℓ_{p}-ball of radius $\lambda / 2$ centered at each $u_{m} \in U_{p, \theta}(r)$.

The points u_{m} lie on the line L_{θ} through O at angle θ, and the Euclidean distance $d_{2}\left(u_{m}, u_{m^{\prime}}\right)$ equals $r\left|m-m^{\prime}\right|$. By choosing r sufficiently small, we can ensure that each pair of adjacent ℓ_{p}-balls intersects in a set with positive area (the shaded rectangles in Fig. 2).

Fig. 2. The spoke overlay construction with $p=1$, in the unit disk D. The left-hand figure shows a single spoke with parameters r, L, θ. The right-hand figure shows how spokes at different angles are superimposed on D.

Thus the two outermost points on each spoke are joined by a segmented path of Euclidean length approximately 2, which when $r=\min \left\{\lambda 2^{-1 / 2-1 / p}, \lambda / 2\right\}$
has approximately $2 \cdot \operatorname{diam}_{p}(D) / \lambda$ edges. Finally, we will need the quantity $A_{p}^{*}(r, \lambda / 2)$, defined as the minimum area of intersection between two ℓ_{p}-balls in \mathbb{R}^{2} of radius $\lambda / 2$ whose centers are at Euclidean distance r. The general solution of this problem seems to involve integrals that cannot be evaluated exactly, except for very special cases such as $p=1, p=2, p=\infty$; however, for fixed r, $A_{p}^{*}(r, \lambda / 2)=\Theta\left(\lambda^{2}\right)$.

Theorem 4. Let $1 \leq p \leq \infty$ and let $\lambda=c \sqrt{\ln n / n}$. Choose $r=\min \left\{\lambda 2^{-1 / 2-1 / p}, \lambda / 2\right\}$, and let $A_{p}^{*}(r, \lambda)$ be the minimum area of intersection between two ℓ_{p}-balls in \mathbb{R}^{2} of radius $\lambda / 2$ whose centers are at Euclidean distance r. Suppose in addition that

$$
c>\sqrt{\pi \lambda^{2} /\left(2 A_{p}^{*}(r, \lambda)\right)},
$$

a constant depending on p. Then, almost always, the unit disk random graph $G_{p}(\lambda, n)$ has diameter at most $\left(2 \cdot \operatorname{diam}_{p}(D)+o(1)\right) / \lambda$ as $n \rightarrow \infty$.

The spoke construction for Theorem 4 consists of $\sim \ln n$ spokes $U_{p, \theta}(r)$, at even angular spacings. Almost always, every region of intersection of two consecutive ℓ_{p}-balls of radius $\lambda / 2$ in every spoke contains at least one vertex of V_{n} provided that $c>\sqrt{\pi \lambda^{2} /\left(2 A_{p}^{*}(r, \lambda)\right)}$. Given any two vertices $v_{i}, v_{j} \in V_{n}$, Corollary 1 provides paths of length $\Theta(1)$ to vertices $v_{i}^{\prime}, v_{j}^{\prime}$, respectively, which each lie inside a spoke. The path between v_{i}^{\prime} and v_{j}^{\prime} is obtained by travelling along those spokes to meet at the origin, where each edge covers an average Euclidean distance of $r=\min \left\{\lambda 2^{-1 / 2-1 / p}, \lambda / 2\right\}$.

We can make the average Euclidean distance covered in a path from v_{i}^{\prime} to v_{j}^{\prime} larger by increasing r. This causes the area of intersection of two consecutive $\ell_{p^{-}}$ balls to decrease, which in turn requires an increase in c in order to guarantee a vertex of V_{n} in every region of intersection. This leads to the following corollary.

Corollary 2. Let $1 \leq p \leq \infty$ and let $\lambda=c \sqrt{\ln n / n}$. For every $\delta \in(0,1]$, there exists $c_{p}(\delta)>0$ such that if $c>c_{p}(\delta)$, then the unit disk random $\operatorname{graph} G_{p}(\lambda, n)$ is almost always connected with diameter $\leq \operatorname{diam}_{p}(D)(1+\delta+o(1)) / \lambda$ as $n \rightarrow \infty$.

References

1. Chen, X., Jia, X.: Package routing algorithms in mobile ad-hoc wireless networks. In: 2001 International Conference on Parallel Processing Workshops. (2001) 485-490
2. Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor eliminationbased broadcasting algorithms in wireless networks. IEEE Trans. Parallel Distrib. Syst. 13 (2002) 14-25
3. Ellis, R.B., Jia, X., Yan, C.H.: On random points in the unit disk. (preprint)
4. Ellis, R.B., Jia, X., Martin, J.L., Yan, C.H.: Random geometric graph diameter in the d-ball. (preprint)
5. Whittaker, E.T., Watson, G.N.: A course of modern analysis. Cambridge University Press (1996)
6. Penrose, M.D.: On k-connectivity for a geometric random graph. Random Structures Algorithms 15 (1999) 145-164
7. Alon, N., Spencer, J.H.: The probabilistic method. Second edn. Wiley-Interscience (2000)
8. Klarner, D.A.: Cell growth problems. Canad. J. Math. 19 (1967) 851-863

[^0]: * Partially supported by NSF grant DMS-9977354.
 ** Partially supported by an NSF Postdoctoral Fellowship.
 *** Partially supported by NSF grants DMS-0245526 and DMS-0308827 and a Sloan Fellowship. The author is also affiliated with Dalian University of Technology.

[^1]: ${ }^{3}$ The diameter of a graph-not to be confused with the diameter of a unit disk!-is defined as the maximum distance between any two of its vertices.

