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Abstract

Let n be a positive integer and λ > 0 a real number. Let Vn be a set of n points in the
unit disk selected uniformly and independently at random. Define G(λ, n) to be the graph with
vertex set Vn, in which two vertices are adjacent if and only if their Euclidean distance is at most
λ. We call this graph a unit disk random graph. Let λ = c

√

lnn/n and let X be the number of

isolated points in G(λ, n). We prove that almost always X ∼ n1−c
2

when 0 ≤ c < 1. It is known
that if λ =

√

(ln n + φ(n))/n where φ(n) → ∞, then G(λ, n) is connected. By extending a
method of Penrose, we show that under the same condition on λ, there exists a constant K such
that the diameter of G(λ, n) is bounded above by K · 2/λ. Furthermore, with a new geometric
construction, we show that when λ = c

√

lnn/n and c > 2.26164 · · · , the diameter of G(λ, n)
is bounded by (4 + o(1))/λ; and we modify this construction to yield a function c(δ) > 0 such
that the diameter is at most 2(1 + δ + o(1))/λ when c > c(δ).
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†Partially supported by NSF grant DMS-9977354.
‡Partially supported by NSF grant DMS-0245526, DMS-0308827 and a Sloan Fellowship. The author is also
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1 Introduction

Let n be a positive integer and λ > 0 a real number. Let Vn be a set of n points in the unit

disk D selected uniformly and independently at random. Define G(λ, n) to be the graph with

vertex set Vn, in which two vertices are adjacent if and only if their Euclidean distance is at most

λ. We call this graph a unit disk random graph, following the notation of Chen and the second

author [4], whose work on package routing algorithms in mobile ad hoc wireless networks motivated

this paper. G(λ, n) is one example of a random geometric graph (RGG), in which nearby points

randomly selected from some metric space are connected. Besides its graph-theoretical interest, the

unit disk random graph is the structural basis of many wireless communication network protocols

[4, 13, 14].

Early optimization problems on RGG’s (e.g., [8, 10, 12]) include finding the minimal spanning

tree or the nearest neighbor graph. Recent emphasis on connectivity and routing has followed the

development of mobile ad hoc wireless networks. These networks are formed by a group of mobile

nodes which communicate with each other over a wireless channel without any centralized control. A

typical requirement is that each node in the network have a path to every other node in the network,

that is, that the network be connected. With this in mind, Gupta and Kumar [7] considered

the problem of determining the critical power (i.e., λ) guaranteeing connectedness asymptotically.

Numerical simulations on connectivity and the size of the largest connected component can be

found in engineering and physics literatures [2, 5]. A rigorous mathematical treatment was given

by Penrose [11], who proved for the random geometric graph in the unit cube that the hitting

times of t-connectivity and having minimum degree t are equal asymptotically. Penrose’s theorem

is analogous to a well-known result in Erdős-Renyi random graph theory: If edges of the complete

graph on n vertices are added in an order chosen uniformly at random from all
(

n
2

)

! possibilities,

then with high probability for n large the resulting graph becomes t-connected at the instant it

achieves a minimum degree of t [3]. We recommend the monograph of Penrose [9] as an authority

on the mathematical theory and applications of random geometric graphs.

As soon as G(λ, n) is connected, it is not clear that the graph diameter is small, that is, close to

2/λ, which is the Euclidean diameter of the unit disk divided by the length of the longest possible

edge. The main result of our work is a bound of K/λ (where K is an absolute constant) on the

asymptotic value of the diameter of G(λ, n) as soon as it is connected, and a tighter bound for

larger λ. This is important information, for example, for the design and analysis of any routing

algorithm in a mobile wireless ad hoc network with G(λ, n) as an underlying model. Our technique

for showing that long straight paths exist with high probability in G(λ, n) can be adapted to other

metric spaces, that is, to RGG’s generally.

For the rest of the paper, we will use the following notation. The vertices of G(λ, n) are

Vn = {v1, . . . , vn}. We use ‖ · ‖2 for the Euclidean norm, so that D := {x ∈ R
2 : ‖x‖2 ≤ 1}. Denote

by O the center of D. If x ∈ R and r > 0, then B(x, r) := {y ∈ R : ‖x−y‖2 ≤ r} is the disk of radius

r about x. The distance between a point x ∈ R
2 and a subset S ⊆ R

2 is d(x, S) := infy∈S ‖y−x‖2,
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and the distance between S, S′ ⊆ R
2 is d(S, S′) := infy∈S d(y, S′). For our purposes, the ball about

a subset S ⊆ R
2 of radius r is B(S, r) := {x ∈ R

2 : d(x, S) ≤ r}, which is the same as ∪s∈SB(s, r)

when |S| is finite. We say that G(λ, n) has a property P almost always (a.a.) if

lim
n→∞

Pr[G(λ, n) has the property P ] = 1.

The organization of this paper is as follows. In Section 2, we quote a result of Dette and Henze

which characterizes the probability of having no isolated vertices when λ ∼
√

lnn/n, and we prove

that a.a., G(λ, n) has n1−c2(1 + o(1)) isolated vertices when λ = c
√

lnn/n and 0 ≤ c < 1. From

a result of Gupta and Kumar or a modification of Penrose, a.a., G(λ, n) is connected when it has

no isolated points; in particular, when λ =
√

(lnn + φ(n))/n for any nonnegative φ(n) → ∞, a.a.,

G(λ, n) is connected. In Section 3, we show that there is an absolute constant K (≈ 129.27 · · · )
such that under the same condition on λ, a.a., G(λ, n) has diameter ≤ K · 2/λ. We then introduce

a geometric construction to show that if λ = c
√

lnn/n and c > 2.26164 · · · , then a.a., the diameter

of G(λ, n) is ≤ 4(1 + o(1))/λ. In fact, there is a function c(δ) > 0 such that if c > c(δ), then a.a.,

the diameter of G(λ, n) is ≤ 2(1 + δ + o(1))/λ.

2 Isolated vertices and connectivity

In [6, Thm. 2.5(c)], Dette and Henz compute the limiting distribution of the minimum λ for which

G(λ, n) has no isolated vertices. We quote this result as Theorem 1 before computing the expected

number of isolated vertices when λ = c
√

lnn/n and 0 ≤ c < 1, and finally discussing how a result

of Gupta and Kumar, or a modification of a result of Penrose imply that λ =
√

lnn/n is also

the threshold for connectedness of G(λ, n). In order to give Theorem 1 in its original form, define

G′(λ, n) in the same way as G(λ, n) except that the n points are selected from the disk of unit area

and radius 1/
√

π; furthermore, for fixed n define Dn,1 := min{µ : G′(µ, n) has minimum degree 1}.

Theorem 1 (Dette, Henze).

πnD2
n,1 − log n

D−→ Z,

where Z is a random variable with Gumbel extreme value distribution Pr[Z ≤ t] = exp(− exp(−t)),

and the symbol
D−→ means convergence in distribution.

Note that G′(µ, n) has no isolated points if and only if Dn,1 ≤ µ. Theorem 1 implies that

limn→∞ Pr[Dn,1 ≤
√

(lnn + α)/(πn) ] = exp(− exp(−α)). By simple re-scaling from the disk with

unit area to the unit disk D, we obtain that when λ =
√

(lnn + α)/n,

lim
n→∞

Pr[G(λ, n) has no isolated points ] = exp(− exp(−α)).

We now use a standard second moment argument (cf. [1]) to compute the number of isolated vertices

when λ is below the threshold.
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Proposition 2. Let λ = c
√

lnn/n, and denote by X the number of isolated vertices in the unit

disk random graph G(λ, n). If 0 ≤ c < 1, then a.a., X ∼ n1−c2 .

Proof. For any vertex vi ∈ Vn, let Ai be the event that vi is isolated in G(λ, n), and let Xi be the

indicator of Ai; i.e. , Xi = 1 if Ai occurs and 0 otherwise. Then X =
∑n

i=1 Xi. We first compute

the expected value E[X].

The vertex vi is isolated in G(λ, n) if and only if there are no other vertices in B(vi, λ) ∩ D. If

‖vi‖2 ≤ 1−λ, then B(vi, λ) ⊆ D. If ‖vi‖2 > 1−λ, the area of B(vi, λ)∩D is at least 1
2πλ2(1+O(λ)).

Hence,

(1 − λ2)n−1 ≤ Pr[Ai] ≤ (1 − λ)2(1 − λ2)n−1 + (2λ − λ2)

(

1 − λ2

2
(1 + O(λ))

)n−1

. (1)

Using 1−x = e−x(1+o(1)) as x → 0, and noting that 0 ≤ c < 1, we have Pr[Ai] = e−λ2n(1+o(1)) =

n−c2(1 + o(1)). By linearity of expectation, E[X] = n Pr[Ai] ∼ n1−c2 . To show additionally that

a.a., X ∼ n1−c2 , it is sufficient to show that Var[X] = o(E(X)2) (cf. [1, Cor. 4.3.3]). Note that

Var[X] =
∑

i

Var[Xi] +
∑

i6=j

Cov(Xi, Xj) ≤ E[X] + n2Cov(X1, X2),

and so it suffices to show that Cov(X1, X2) = Pr[A1∩A2]−Pr[A1] Pr[A2] is o(n−2c2). From (1), we

have Pr[A1] Pr[A2] = n−2c2(1 + o(1)). We compute Pr[A1 ∩ A2] according to the distance between

v1 and v2. There are three cases.

1. ‖v1−v2‖2 ≤ λ. In this case Pr[A1] = Pr[A2] = 0, which implies Pr[A1∩A2 | ‖vi−vj‖2 ≤ λ] = 0.

2. λ < ‖v1 − v2‖2 ≤ 2λ. If ‖v1‖2 ≤ 1 − 3λ, both B(v1, λ) and B(v2, λ) are completely within

D, the overlapping of B(v1, λ) and B(v2, λ) has area less than (2π/3−
√

3/2)λ2. In this case

the area of B(v1, λ) ∪ B(v2, λ) is at least (4π/3 +
√

3/2)λ2. If ‖v1‖2 > 1 − 3λ, the area of

(B(v1, λ)∪B(v2, λ))∩D is no less than the area of B(v1, λ)∩D, which is ≥ 1
2πλ2(1 + O(λ)).

Altogether, we have

Pr[Ai ∩ Aj | λ < ‖vi − vj‖2 ≤ 2λ]

≤ (1 − 3λ)2

(

1 − 4

3
λ2 −

√
3

2π
λ2

)n−2

+ (6λ − 9λ2)

(

1 − λ2

2
(1 + O(λ))

)n−2

= o(n−c2).

3. ‖v1 − v2‖2 > 2λ. If both v1, v2 are in B(O, 1 − λ), then Pr[A1 ∩ A2 | ‖v1 − v2‖2 > 2λ] ≥
(1 − λ)4(1 − 2λ2)n−2. Conditioning on the events that one or both of v1, v2 are not in

B(O, 1 − λ), we have

Pr[A1 ∩ A2 | ‖v1 − v2‖2 > 2λ] ≤ (1 − λ)4(1 − 2λ2)n−2

+ 2(2λ − λ2)(1 − λ)2
(

1 − 3

2
λ2(1 + O(λ))

)n−2

+ (2λ − λ2)2
(

1 − λ2(1 + O(λ))
)n−2

,
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which leads to Pr[A1 ∩ A2|‖v1 − v2‖2 > 2λ] = (1 + o(1))n−2c2 .

Combining the above three cases, by using Pr[λ < ‖vi−vj‖2 < 2λ] ≤ 3λ2 and 1−4λ2 ≤ Pr[‖vi−
vj‖2 ≥ 2λ] ≤ 1, we obtain Pr[A1∩A2] = (1+o(1))n−2c2 , which implies that Cov(X1, X2) = o(n−2c2)

as desired.

Gupta and Kumar proved [7, Theorem 3.2] that in the disk with unit area the threshold for

having no isolated vertices is also the threshold for connectedness, in the following sense, (stated

after rescaling to the unit disk).

Theorem 3 (Gupta, Kumar). Let λ =
√

(lnn + φ(n))/n. Then G(λ, n) is almost always connected

iff φ(n) → ∞.

It is also true by exhaustive checking of [11, Thm. 1.1] in the setting of the unit disk and

Euclidean distance, that the hitting times for connectivity and for having minimum degree 1 are

almost always the same. Either way we see that if φ(n) → ∞ and λ =
√

(lnn + φ(n))/n, then a.a.,

G(λ, n) is connected.

3 Connectivity and graph diameter

In this section we prove in Theorem 4 that as soon as G(λ, n) is connected, the diameter of G(λ, n)

is at most K/λ, where K > 0 is an absolute constant. When λ = c
√

lnn/n and c > 2.26164 · · · , a

separate argument using a geometric construction yields a bound of (4+o(1))/λ in Theorem 7. We

also show in Corollary 8 how further increasing c leads to a better upper bound on the diameter.

Theorem 4. Let φ(n) → ∞ be nonnegative. There exists an absolute constant K > 0 such that if

λ ≥
√

(lnn + φ(n))/n, then a.a., the unit disk random graph G(λ, n) is connected with diameter

< K · 2/λ.

The proof is based on Proposition 4 below. For any two points vi, vj in the unit disk D, let

Ti,j(k) =
[

convex hull of (B(vi, kλ) ∪ B(vj , kλ))
]

∩ D,

where the convex hull of B(vi, kλ) ∪ B(vj , kλ) is the intersection of all convex sets containing

B(vi, kλ)∪B(vj , kλ). Figure 1 illustrates this convex hull when vi, vj are away from the boundary

of D. Let An(k) be the event that there exist two points vi, vj ∈ Vn such that (i) at least one point

is inside B(O, 1− (k + 1)λ), and (ii) there is no path of G(λ, n) that lies in Ti,j(k) and connects vi

and vj .

Proposition 5. Let φ(n) → ∞ be nonnegative. There exists an absolute constant K0 > 0 such

that if λ ≥
√

(lnn + φ(n))/n, then

lim
n→∞

Pr[An(K0)] = 0.
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Proof. Suppose An(k) occurs. For simplicity, write Ti,j(k) as Ti,j . Let S(vj) be the set of points

in Vn ∩ Ti,j that are connected to vj by paths in Ti,j . Let R(vj) be the points in Vn ∩ Ti,j \ S(vj).

B(S(vj),
λ
2 ) is a connected subset of R

2, which is disjoint with B(R(vj),
λ
2 ). Let D1 be the closure of

the connected component of Ti,j\B(S(vj),
λ
2 ) containing vi, and let D2 denote the closure of Ti,j\D1.

Finally, let L = D1 ∩ D2. By the proof of Penrose [11, p. 162], L is connected. Geometrically, L is

the boundary of D1 inside Ti,j , which separates points vi and vj .

L is on the boundary of B(S(vj),
λ
2 ), so for any point w on L, d(w, S(vj)) = λ

2 . On the other

hand, for any point u ∈ R(vj), if there exists a point w ∈ L such that ‖u − w‖2 ≤ λ
2 , then

d(u, S(vj)) ≤ λ, a contradiction. Hence there are no points w ∈ Vn ∩ Ti,j such that d(w, L) < λ
2 .

This implies that the open strip which is the interior of B(L, λ
2 ) ∩ Ti,j contains no points of Vn.

Let M = ∂Ti,j \∂D, where ∂X denotes the boundary of X. If d(L, M) > λ
2 , then S(vj) is indeed

a connected component of G(λ, n), making G(λ, n) disconnected. By Theorem 3, this happens with

probability approaching 0. Hence we can assume that d(L, M) ≤ λ
2 . Note that the intersection of L

and the line segment vivj is nonempty. Therefore the Euclidean diameter of L is at least (k − 1)λ.

Case 1. Suppose both points vi, vj are in B(O, 1 − (k + 1)λ). Then Ti,j is the convex hull

of B(vi, kλ) ∪ B(vj , kλ), and d(Ti,j , ∂D) ≥ λ. In this case the (open) strip B(L, λ
2 ) is completely

contained in D.

Take ǫ = λ/(4
√

2), and cover D by squares of side ǫ. Let X be the union of all squares that

intersect with D. Following Penrose, let Ln denote the set of centers for squares in X, and for

z ∈ Ln, let Bz be the closed square centered at z.

L

i jvv

Figure 1: Both vi, vj are inside B(O, 1 − (k + 1)λ).

Let U∗ be the set of points z ∈ Ln such that Bz has nonempty intersection with L. Since L is

connected, U∗ is a ∗-connected subset of Ln, i.e., the union of the corresponding set of squares is

connected (see Fig. 1). For each z ∈ U∗, the square Bz contains some point u ∈ L, and hence is

contained in B(u, λ
2 ) ⊂ B(L, λ

2 ) This implies that for each z ∈ U∗, Bz is contained in D and has no

points of Vn. By the Euclidean diameter condition on L, card(U∗) ≥ 4(k − 1).

Case 2. Suppose the point vj lies in B(O, 1 − (k + 1)λ), but vi does not. Then part of the

boundary of Ti,j may be on the boundary of D. In this case we need to consider the boundary

effect.
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u

w

L

L’

v vi j

unit disk boundary

Figure 2: One of vi, vj is not inside B(O, 1 − (k + 1)λ).

Divide Ti,j into two near-symmetric parts by the line vivj . From the argument before Case 1,

a.a., there is a connected part of L, denoted by L′, such that d(L′, M) ≤ λ
2 , and L′ only intersects

the line segment vivj at one point w. Assume u is a point on M with d(L′, u) ≤ λ
2 (see Fig. 2).

Consider the half of Ti,j which contains L′. Since the boundary of D can only appear on one

side of L′, there is one half of the strip B(L′, λ
2 ) that contains no points of ∂D. Take L1 to be the

boundary of B(L′, λ
4 ) in that half. Then the Euclidean diameter of L1 is at least (k − 1)λ, and

B(L′, λ
4 ) lies inside D and contains no points in Vn.

Again using the ǫ-square covering of D, let W ∗ be the set of points z ∈ Ln such that Bz has

nonempty intersection with L1. Then W ∗ is ∗-connected with cardinality at least 4(k − 1). For

each z ∈ W ∗, Bz is contained in D and has no points in Vn.

Now for both cases, let An,i denote the set of ∗-connected sets A ⊂ Ln of cardinality i. By

a Peierls argument [11, proof of Prop. 5.2], there exist constants γ > 0 and c′ > 0 such that

card(An,i) ≤ c′λ−2 exp(γi). Hence

Pr[An(k)] ≤
∑

i≥4(k−1)

∑

A∈An,i

Pr[Vn ∩ (∪z∈ABz) = ∅]

≤
∑

i≥4(k−1)

c′λ−2 exp(γi)

(

1 − i

π
ǫ2
)n

≤
∑

i≥4(k−1)

c′λ−2 exp

(

γi − inλ2

32π

)

.

For n sufficiently large, γ < nλ2

64π , and c′λ−2 < n. Therefore

Pr[An(k)] ≤ n
∑

i≥4(k−1)

[

exp

(

−nλ2

64π

)]i

= o
(

n1− k
16π

)

.

Taking k = K0 = 16π, the last term in the above formula is o(1).
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Proof of Theorem 4. Proposition 5 states that there exists an absolute constant K0 > 0 such that

as n goes to infinity, a.a. any two points vi, vj with at least one in B(O, 1−(K0+1)λ) are connected

by a path inside Ti,j(K0). For points vi, vj with at least one in B(O, 1 − (K0 + 1)λ), let

vi = u0 −→ u1 −→ u2 −→ · · · −→ ug = vj

be such a path with minimum g. Then clearly the Euclidean distance between uk and ul is larger

than λ for any |k − l| > 1. This implies that the balls {B(uk,
λ
2 ) : k even} are disjoint. Hence

⌈g

2

⌉

π

(

λ

2

)2

≤ Area

(

B

(

Ti,j(K0),
λ

2

))

≤ π

(

K0 +
1

2

)2

λ2 + 2

(

K0 +
1

2

)

λ, (2)

which gives path length

g ≤ 8(2K0 + 1)

πλ
+ K1,

where K1 is an absolute constant.

If both vertices lie outside of B(O, 1− (K0 +1)λ), then we can travel from the first vertex to an

intermediate vertex just inside B(O, 1 − (K0 + 1)λ) using a constant length path, and then on to

the second vertex. To this end, let Bn(k) be the event that some vertex vi 6∈ B(O, 1− (k +1)λ) has

no corresponding vj ∈ B(O, 1− (k +1)λ)∩B(vi, (2k +1)λ) with a path connecting vi and vj inside

Ti,j(k). We break this event into two cases as follows. Let Cn(k) be the event that there exists a

vertex vi 6∈ B(O, 1−(k+1)λ) with no corresponding vertex vj ∈ B(O, 1−(k+1)λ)∩B(vi, (2k+1)λ).

Let Dn(k) be the event that there exists a vertex vi 6∈ B(O, 1 − (k + 1)λ) with a corresponding

vertex vj ∈ B(O, 1 − (k + 1)λ) ∩ B(vi, (2k + 1)λ) but no connecting path in Ti,j(k). We have

Pr[Cn(k)] ≤ n
(

1 − (1 − (k + 1)λ)2
)

(

1 −
(

kλ

2

)2
)n−1

= o(λn1− k2

4 ) ,

Pr[Dn(k)] ≤ Pr[An(k)] ≤ o(n1− k
16π ).

Therefore with k = K0 = 16π as in Proposition 5, we have

Pr[Bn(K0)] ≤ Pr[Cn(K0)] + Pr[Dn(K0)] = o(1).

This proves that a.a., any point vi /∈ B(O, 1− (K0 +1)λ) is connected to a point vj ∈ B(vi, (2K0 +

1)λ)∩B(O, 1− (K0 + 1)λ) by a path in Ti,j(K0). In this case, the area of Ti,j(K0) is no more than

π(K0λ)2 + 2K0(2K0 + 1)λ2. Thus there exists an absolute constant K2 such that a.a, any vertex

vi /∈ B(O, 1− (K0 + 1)λ) is connected to a vertex vj ∈ B(vi, (2K0 + 1)λ) ∩B(O, 1− (K0 + 1)λ) by

a path of length ≤ K2. Combining with the previous argument, the diameter of G(λ, n) is at most

4(2K0 + 1)

π
· 2

λ
+ K3,

where K3 = K2 + K1 is an absolute constant.
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In statement of Theorem 4, taking any K > 128 + 4/π suffices, but we did not attempt to

optimize K. We shall need later the following corollary, essentially obtained from the proof of

Theorem 4 by replacing the Euclidean diameter 2 of the unit disk in (2) with ‖vi − vj‖2 for

arbitrary vertices vi, vj ∈ Vn.

Corollary 6. Let φ(n) → ∞ be nonnegative. There exists an absolute constant K > 0 (the same

as in Theorem 4) such that if λ ≥
√

(lnn + φ(n))/n, then a.a., every pair of vertices vi and vj in

the unit disk random graph G(λ, n) is connected by a path of length < K · ‖vi − vj‖2/λ.

Proof. The case ‖vi−vj‖2 ≤ λ is trivial. For ‖vi−vj‖2 > λ, let K0 be as in Proposition 5 and let K2

and K1 be as in the proof of Theorem 4. If at least one of vi, vj is in B(O, 1−(K0 +1), λ), the result

follows immediately by replacing 2 with ‖vi−vj‖2 in (2). If both vi, vj /∈ B(O, 1−(K0 +1), λ), then

there exists an intermediate vertex vk ∈ B(O, 1− (K0 + 1)λ) ∩B(vi, (2K0 + 1)λ), a path of length

at most K2 between vi and vk, and a path of length at most (4(2K0 + 1)/π) · ‖vk − vj‖2/λ + K1

between vk and vj . Since ‖vk − vj‖2 ≤ ‖vi − vj‖2 + ‖vi − vk‖2 ≤ ‖vi − vj‖2 + (2K0 + 1)λ, the result

follows, as λ < ‖vi − vj‖2.

We now consider an overlay of the unit disk with columns of tiles of height λ/2 and width
√

3λ/2,

where each column is centered on O and there is a uniform angular spacing between columns. Each

tile has an “active” lens-shaped interior region, so that two vertices in the active regions of abutting

tiles in the same column are adjacent in G(λ, n). When c > 2.26164 · · · , a.a., there is a vertex in Vn

lying inside every tile’s active region, guaranteeing paths in G(λ, n) in each column with average

edge length ∼ λ/2, which forms the basis of the bound on the diameter of G(λ, n) in the following

theorem.

Theorem 7. Let λ = c
√

lnn/n. If c >

√
12π

√

4π − 3
√

3
≈ 2.26164 · · · , then a.a., the unit disk random

graph G(λ, n) is connected with diameter ≤ (4 + o(1))/λ.

Proof. Construct an overlay of D with columns of identical rectangular tiles with height λ/2 and

width
√

3λ/2. A single column of tiles, as illustrated in Figure 3(a), consists of as many tiles as

will completely fit inside D, arranged so that the geometric center of the middle tile coincides with

O. The overlay of D consists of t = 2⌊(lnn)/2⌋ such columns at a uniform angular spacing of π/t,

as shown in Figure 3(b) (other choices of t are possible). Each tile has an “active” lens-shaped

interior region. For the tile in Figure 3(a) bounded by lines L1, L2, L3, L4, this is the region ABCD,

bounded by the arc ABC of the circle which has center D and radius λ/2, and the arc ADC of the

circle with center B and radius λ/2. It is easy to see that the area of the region ABCD is

α =
4π − 3

√
3

24
· λ2.

By construction, two vertices in Vn are adjacent in G(λ, n) (i) if they lie in the active regions of

abutting tiles in the same column, or (ii) if they lie anywhere inside the same tile.
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vi

vj

(b)

A

B

C

D
O

L1 L2

L4

L3

(a)

t = 2⌊(lnn)/2⌋

π

t

vi

vj

ui

uj

λ

2

√
3

2
λ

Figure 3: An overlay of the unit disk of (a) columns of tiles, such that (b) the ∼ lnn columns are

uniformly angularly spaced and each centered at O.

Let M denote the total number of tiles in all t columns. Noting that the height of a single tile

is λ/2, we can compute that

M = t

(

2

λ/2
+ Θ(1)

)

=
4

λ
(lnn + Θ(1)) .

Let s be a tile counted in M . Let F (s) denote the event that vi is not in the active region s for

all i = 1, . . . , n. Then, for each s,

Pr[F (s)] =
(

1 − α

π

)n
∼ n−c2· 4π−3

√
3

24π .

Therefore choosing an arbitrary but fixed tile s0 counted by M ,

Pr

[

⋃

s counted in M

F (s)

]

≤ M · Pr[F (s0)] ≤ (1 + o(1))
4 lnn

λ
n−c2· 4π−3

√
3

24π

=

(

4

c
+ o(1)

)√
lnn n

1

2
−c2· 4π−3

√
3

24π , (3)

which implies that, as n → ∞,

Pr

[

⋃

s counted in M

F (s)

]

= o(1)
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provided that

c >

√

24π

2(4π − 3
√

3)
≈ 2.26164 · · · .

This means that a.a., every tile counted in M contains at least one vertex of V in its active region.

Let τi and τj be the tilings with angular orientation closest to those of the lines through vi and

O, and vj and O, respectively. Almost always, for any pair vi, vj ∈ Vn there must exist vertices

ui, uj in the active regions of tiles in τi and τj , respectively, such that ‖vi − ui‖2 and ‖vj − uj‖2

are at most π/(2t) + 2λ. By Corollary 6, there exist paths in G(λ, n) from vi to ui, and from

vj to uj , each of length at most K(π/(2t) + 2λ)/λ = o(1)/λ, where K is an absolute constant

independent of the choice of vi, vj . Traveling from ui to a tile in τi containing O takes at most

1/(λ/2) steps. Transferring to the (active region of the) tile in τj containing O takes at most 1

step, and traveling to uj takes at most 1/(λ/2) steps. Therefore a.a., the diameter of G(λ, n) is at

most (4 + o(1))/λ.

For any two points with distance d in D, the shortest path connecting them has length at

least d/λ, which implies that asymptotically the diameter of the graph G(λ, n) is ≥ (2 − o(1))/λ.

Combining this with Theorem 4, when G(λ, n) is connected, its diameter is Θ(λ−1). We can improve

Theorem 7 and approach the asymptotic lower bound by giving ground in terms of c in order to

stretch the height of the tiles, as described in the following corollary.

vj

vi

λ
2

λ

2
(1 + ǫ)

ǫλ
2

ǫλ
2

Figure 4: A stretched tile increases the length of the typical edge {vi, vj} inspected when bounding the

diameter of G(λ, n).

Corollary 8. Let λ = c
√

lnn/n. For every δ ∈ (0, 1], there exists a c(δ) > 0 such that if c > c(δ),

then a.a., the unit disk random graph G(λ, n) is connected with diameter ≤ 2(1 + δ + o(1))/λ.
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Proof. Let δ ∈ (0, 1], and let ǫ = (1 − δ)/(1 + δ). Starting with the tiling of Theorem 7, increase

the height of each tile by ǫλ/2 to obtain the new tiles illustrated in Figure 4. This is done while

keeping the center tile in each row centered on O, and so that the tiling overlay consists only

of those tiles entirely within D. The width of a tile may still be taken to be
√

3λ/2, although

a slightly greater width depending on ǫ is possible while still forcing adjacency between any two

vertices in the same tile. Note that the two circles whose intersection determines one of the active

regions are still centered on the boundaries of consecutive tiles, but the extra height of the tiles

causes a vertical gap of ǫλ/2 between the active region and the tile boundary. The area of the

active region as a function of ǫ is Area(ǫ) = λ2

2 arccos
(

1
2(1 + ǫ)

)

− λ2

8 (1 + ǫ)
√

3 − 2ǫ − ǫ2. Now let

c > c(δ) =
√

π/(2Area(ǫ)/λ2), making the quantity in (3) at most o(1). Therefore a.a., there is

a point of Vn in the active region of each tile. Following the procedure in the proof of Theorem

7 to find a short path between any pair vi, vj ∈ Vn, a.a., the diameter of G(λ, n) is at most
2

(λ/2)(1+ǫ) + o(1)/λ = 2(1 + δ + o(1))/λ.
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