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Abstract

Modeling counterparty risk is computationally challenging because it
requires the simultaneous evaluation of all the trades with each counter-
party under both market and credit risk. We present a multi-Gaussian
process regression for estimating portfolio risk, which is well suited for
OTC derivative portfolios, in particular CVA computation. Our spatio-
temporal modeling approach avoids nested MC simulation by learning a
’kernel pricing layer’. The pricing layer is flexible - we model the joint pos-
terior of the derivatives as a Gaussian over function space, with the spatial
covariance structure imposed only on the risk factors. Monte-Carlo (MC)
simulation is then used to simulate the dynamics of the risk factors. Our
approach quantifies uncertainty in portfolio risk arising from uncertainty
in point estimates. Numerical experiments demonstrate the accuracy and
convergence properties of our approach for CVA estimation.

1 Overview

Post the global financial crisis of 2007-2008, banks have been subject to much
stricter regulation and conservative capital and liquidity requirements. Pricing,
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valuing and managing over-the-counter (OTC) derivatives has been substan-
tially revised to more robustly capture counter-party credit risk. Pricing now
includes valuation adjustments collectively known as xVAs (Abbas-Turki et al.,
2018; Kenyon and Green, 2014; Crépey et al., 2014). Since the xVAs must be
hedged, first-order sensitivities, such as delta and vega, are also computed.

The BCBS pointed out that 2/3 of total credit losses during the 2007-2009
crisis were CVA losses, but this risk was not capitalized under Basel II. A first
CVA regulatory framework was introduced in December 2010 as part of the
initial phase of the Basel III framework.

Modeling counterparty risk is computationally challenging because it re-
quires the evaluation of all the trades with each counterparty under market and
credit simulation. In practice, CVA computation requires pricing an option for
each counterparty portfolio under simulated market moves, with counterparty
default modeled separately. There has been much progress towards real-time
CVA estimation using adjoint algorithmic differentiation to reduce the com-
putational work for xVA sensitivities (Giles and Glasserman, 2005; Capriotti
and Peacock, 2011; Capriotti, 2011; Antonov et al., 2018). The main source of
computational complexity in CVA computation arises from portfolio holdings in
exotic derivative contracts such as path dependent and early exercise options.
Nested Monte-Carlo simulations may then be needed to evaluate the various
valuation adjustments and sensitivities. Nevertheless, nested Monte Carlo sim-
ulations are still unsuited to real-time computations and, in particular, do not
lead themselves to real-time what-if analysis, under which a particular market
risk factor is perturbed. An alternative is nonlinear regressions in the form of
least squares Monte Carlo methods a la (Longstaff and Schwartz, 2001). We
note that the computational complexity is exacerbated for computation of CVA
Expected Shortfall and VaR, although a full explanation of this is beyond the
scope of this paper.

Spiegeleer et al. (2018) note, in the general context of derivative pricing,
that many of the calculations for pricing a wide array of complex instruments,
are often similar. Furthermore, the market conditions affecting OTC derivatives
may often only slightly vary between observations by a few variables, such as in-
terest rates. Rather than simulate a derivative price or Greeks, Spiegeleer et al.
(2018) propose learning the pricing function, through Gaussian Process regres-
sion. Specifically, the authors configure the training set over a grid and then
use the GP to interpolate at the test points. The advantage of this approach,
compared to regression on historical option prices, is the ability to estimate op-
tions prices over a larger domain. On the other hand, the GP estimates depend
on option pricing models, rather than just market data - somewhat counter the
motivation for adopting machine learning.

Gaussian process regression, or simply Gaussian Processes (GPs), is a Bayesian
kernel learning method which has demonstrated much success in spatio-temporal
applications outside of finance. Their adoption in financial modeling is less
widely and typically under the name of ’kriging’ (see e.g. (Liu and Staum,
2009)). We refer to the reader to (Rasmussen and Williams, 2005) for an excel-
lent general introduction to GPs. In additional to a number of favorable statisti-

2



cal and mathematical properties, such as universality (Micchelli et al., 2006), the
implementation support infrastructure is mature - provided by scikit-learn,
Edward, STAN, gpTorch and other open source machine learning packages.

Spiegeleer et al. (2018) demonstrate the speed up of GPs relative to Monte-
Carlo methods and tolerable accuracy loss applied to pricing and Greek estima-
tion with a Heston model, in addition to approximating the implied volatility
surface. The increased expressibility of GPs compared to cubic spline inter-
polation, a popular numerical approximation techniques useful for fast point
estimation, is also demonstrated.

The applications shown in (Spiegeleer et al., 2018) are limited to single
instrument pricing and do not consider risk modeling aspects. In particular,
their study is limited to univariate GPs (i.e. with a single response), without
consideration of multivariate GPs (a.k.a. multi-GPs).

This paper presents a multivariate generalization of GPs for learning the
posterior distribution of a portfolio value prediction1. Multi-GPs learn the joint
posterior distribution of each derivative price in the portfolio, given a training
set of, say, risk factors, time to maturities and derivative prices. In a single-
response GP setting, individual GPs are used to model the posterior of each
predicted derivative price under the assumption that the derivative prices are
independent, conditional on the training data and test input. Given that either
the derivatives may share common underlyings, or the underlyings are different
but correlated, this assumption is clearly too restrictive.

In this context, the multi-GP model is both a theoretical and a practical
innovation. Multi-GPs directly model the uncertainty in the prediction of a
vector of derivative prices (responses) with spatial covariance matrices specified
by kernel functions. Thus the amount of error in a portfolio value prediction,
at any point in space and time, can be more comprehensively modeled using
multi-GPs than single -GPs.

The need for uncertainty in the prediction is the primary practical motivation
for using GPs, as opposed to frequentist machine learning techniques such as
support vector machines or neural networks etc, which provide point estimates.
In practice, a high uncertainty in a prediction might result in a GP model
estimate being rejected in favor of either retraining the model or even using
derivative model pricing.

Overview Our goal is to develop a methodology and provide numerical ev-
idence in favor of using multi-GPs to estimate the CVA of a simple portfolio
holding multiple derivatives. Note that the use of multi-GPs compared to single-
GPs provides a robust approach to aggregating uncertainty in point estimates
over a portfolio - accounting for the joint posterior over the options in the port-
folio.

Our approach is based on training to model rather than training to data
due to limitations of OTC derivative historical data. However, if historical data

1Through out this paper, we will refer to ’prediction’ as out-of-sample point estimation.
For avoidance of doubt, the test point need not be in the future as the terminology suggests.
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is available, we emphasize that the methodology presented here could just as
easily train to data, as demonstrated in Section 6.3.

This paper begins by reviewing GPs in the simpler setting of a single re-
sponse, providing the minimal necessary terminology for the remainder of the
paper. Section 3 introduces a multi-response generalization of GPs and demon-
strates the application to prediction of a toy portfolio holding a call and put
option. Section 4 develops the approach for portfolio risk modeling, introducing
a transition density function with the view towards Monte-Carlo simulation of
the risk factors. Section 5 reviews the formulation of a CVA model which uses
our MC-MGP approach. Numerical experiments demonstrating the accuracy
and convergence properties of the approach are presented in Section 6. Section
7 concludes.

2 Gaussian Processes

Statistical inference involves learning a function Y = f(X) of the data, (X,Y ) :=
{(xi,yi) | i = 1, . . . , n}. The idea of Gaussian processes (GPs) is to, without
parameterizing2 f(X), place a prior directly on the space of functions (MacKay,
1997). The GP is hence a Bayesian nonparametric model that generalizes the
Gaussian distributions from finite dimensional vector spaces to infinite dimen-
sional function spaces.

Before describing GPs in more detail, it is instructive to contrast GPs with
classical financial modeling. In a Black-Scholes framework, noise is modeled as
a Gaussian distribution in a vector space and linear diffusion of asset prices is
modeled with multi-variate Geometric Brownian motion (GBM). Under the risk
neutral measure, the implied drift and covariance of the GBM can be calibrated
to observed pairs of asset and option prices. It well known that since derivative
prices are not generated by the Black Scholes model, the calibrated parameters
violate the assumption of spatial-temporal independence.

GPs do not assume a data generation process and learn a parameterized
covariance function of the input through maximum likelihood estimation over
all input and output pairs. GPs learn the priors over the output space without
necessarily knowing the functional form of the map between input and output.
So, for example, if the data is observed pairs of asset and option prices, then
the GP learns the functional relationship between them. If the option prices are
generated by an option pricing model, then the GP will learn the relationship
between the input variables and the model option prices, without knowledge of
the model.

GPs are an example of a more general class of supervised machine learning
techniques referred to as ’kernel learning’, which model the covariance matrix
from a set of parametrized kernels over the input, rather than from the joint
expectation of GBMs. The approach can consequently be referred to as ’model-
free’ if the data is learned without relying on an option pricing and asset dynam-

2This is in contrast to nonlinear regressions commonly used in finance, which attempt to
parameterize a non-linear function with a set of weights.
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ics model. However, in this paper, we will mainly train our GPs on simulated
data.

The basic theory of prediction with Gaussian processes dates back to at least
as far as the time series work of Wiener [1949] and Kolmogorov [1941] in the
1940’s (Whittle and Sargent, 1983). Examples of applying GPs to financial time
series prediction are presented in (Roberts et al., 2013). The same authors help-
fully note that AR(p) processes are discrete time equivalents of GP models with
a certain class of covariance functions, known as Matérn covariance functions.
Hence, GPs can be viewed as a Bayesian non-parametric generalization of well
known econometrics techniques.

GPs are not new in portfolio risk modeling; da Barrosa et al. (2016) present
a GP method for optimizing financial asset portfolios which allows for approx-
imating the risk surface. Other examples of GPs include meta-modeling for
Expected Shortfall through nested simulation (Liu and Staum, 2009), where
GPs are used to infer portfolio values in a scenario based on inner-level simula-
tion of nearby scenarios. This significantly reduces the required computational
effort by avoiding inner-level simulation in every scenario and naturally takes
account of the variance that arises from inner-level simulation.

Spiegeleer et al. (2018) demonstrate how GPs can be applied to many classi-
cal problems in derivate pricing, with speed-ups of several orders of magnitude
through pricing function estimation. GPs are found to be much more accurate
than spline fitting techniques commonly used in derivative modeling. Examples
demonstrate the pricing of American options and the pricing of exotic options
under models beyond the Black–Scholes setting.

2.1 Preliminaries

More formally, we say that a random function f is drawn from a GP with a
mean function µ and a covariance kernel k, f ∼ GP(µ, k), if for any vector of
inputs, [x1,x2, . . . ,xn], the corresponding vector of function values is Gaussian:

[f(x1), f(x2), . . . , f(xn)] ∼ N (µ,KX,X),

with mean µ, such that µi = µ(xi), and covariance matrix KX,X that satisfies
(KX,X)ij = k(xi,xj). GPs can be seen as distributions over the reproducing
kernel Hilbert space (RKHS) of functions which is uniquely defined by the kernel
function, k (Scholkopf and Smola, 2001). GPs with RBF kernels are known to
be universal approximators with prior support to within an arbitrarily small
epsilon band of any continuous function (Micchelli et al., 2006).

Assuming additive Gaussian noise, y | x ∼ N (f(x), σ2), and a GP prior on
f(x), given training inputs x ∈ X and training targets y ∈ Y , the predictive
distribution of the GP evaluated at an arbitrary test point x∗ ∈ X∗ is:

f∗ | X,Y,x∗ ∼ N (E[f∗|X,Y,x∗],V[f∗|X,Y,x∗]), (1)

where the moments are

E[f∗|X,Y,X∗] = µX∗ +KX∗,X [KX,X + σ2I]−1y,

V[f∗|X,Y,X∗] = KX∗,X∗ −KX∗,X [KX,X + σ2I]−1KX,X∗ .
(2)
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Here, KX∗,X , KX,X∗ , KX,X , and KX∗,X∗ are matrices that consist of the kernel,
k : Rp ×Rp 7→ R, evaluated at the corresponding points, X and X∗, and µX∗
is the mean function evaluated on the test inputs X∗.

2.2 Hyper-parameter tuning

GPs are fit to the data by optimizing the evidence-the marginal probability of
the data given the model with respect to the learned kernel hyperparameters.

The evidence has the form:

log p(y | x, λ) = −
[
y>(K + σ2I)−1y + log det(K + σ2I)

]
− n

2
log 2π, (3)

where we use a shorthand K for KX,X , and K implicitly depends on the kernel
hyperparameters λ = [`, σ] and ` is the length-scale of the Radial Basis Function
(RBF) kernel:

cov(f(x), f(x′)) = k(x,x′) = exp{− 1

2`2
||x− x′||2}. (4)

This objective function consists of a model fit and a complexity penalty term
that results in an automatic Occam’s razor for realizable functions (Rasmussen
and Ghahramani, 2001). By optimizing the evidence with respect to the kernel
hyperparameters, we effectively learn the structure of the space of functional
relationships between the inputs and the targets:

λ∗ = arg max
λ

log p(y | x, λ) = −
[
y>(K + σ2I)−1y + log det(K + σ2I)

]
−n

2
log 2π.

(5)
The gradient of the log likelihood is given analytically:

∂λ log p(y | x, λ) = tr
(
ααT − (K + σ2I)−1)∂λ(K + σ2I)−1

)
(6)

where α := (K + σ2I)−1y and

∂`(K + σ2I)−1 = −(K + σ2I)−2∂`K, (7)

∂σ(K + σ2I)−1 = −2σ(K + σ2I)−2. (8)

and
∂`k(x,x′) = `−3||x− x′||2k(x,x′). (9)

Computational properties: Training time, which is required for maximiz-
ing (5) numerically, scales poorly with the number of observations n. This
complexity stems from the need to solve linear systems and compute log deter-
minants involving an n × n symmetric positive definite covariance matrix K.
This task is commonly performed by computing the Cholesky decomposition
of K incurring O(n3) complexity. Prediction, however, is fast and can be per-
formed in O(1), and hence the primary motivation for using GPs is real-time
risk estimation performance.

6



Note that fast massively scalable Gaussian processes (MSGP) (Gardner
et al., 2018) are a significant extension of the basic kernel interpolation frame-
work described above. The core idea of the framework is to improve scalability
by combining GPs with ’inducing point methods’. The concept is similar to
multi-grid methods. A small set of inducing points are extracted from the origi-
nal training points. The covariance matrix has Kronecker and Toeplitz structure
which is exploited by FFT. Finally, output over the original input points is in-
terpolated from the output at the inducing points. In this paper, we use the
basic interpolation approach and leave the application of MSGP for future work.

3 Multi-response Gaussian Processes

A multivariate Gaussian process is a collection of random vector-valued vari-
ables, any finite number of which have matrix-variate Gaussian distribution.
We define a multivariate Gaussian process as follows.

Definition 3.0.1 (MV-GP). f is a multivariate Gaussian process on Rp with
vector-valued mean function µ : Rp 7→ Rd, kernel k : Rp×Rp 7→ R and positive
semi-definite parameter covariance matrix Ω ∈ Rd×d if the vectorization of any
finite collection of vector-valued variables have a joint multi-variate Gaussian
distribution,

vec([f(x1), . . . , f(xn)]) ∼ N (vec(M),Σ⊗ Ω),

where f ,µ ∈ Rd are column vectors whose components are the functions {fi}di=1

and {µi}di=1 respectively. Furthermore, M ∈ Rd×n with Mij = µj(xi), and
Σ ∈ Rn×n with Σij = k(xi,xj). Sometimes Σ is called the column covariance
matrix while Ω is the row covariance matrix. We denote f ∼MGP(µ, k,Ω).

3.1 Multivariate Gaussian process regression

Given n pairs of observations {(xi,yi)}ni=1,xi ∈ Rp,yi ∈ Rd, we assume the
following model

f ∼ MGP(µ, k′,Ω),

yi = f(xi), i ∈ {1, . . . , n}

where k′ = k(xi,xj) + δijσ
2
n, and σ2

n is the variance of the additive Gaussian
noise. With loss of generality, we follow the convention in the literature of
assuming µ = 0.

By the definition of multivariate Gaussian process, it yields that the vec-
torization of the collection of functions [f(x1), . . . , f(xn)] follow a multivariate
Gaussian distribution

vec([f(x1), . . . , f(xn)]) ∼ N (0,K ′ ⊗ Ω),

where K ′ is the n× n covariance matrix of which the (i, j)-th element [K ′]ij =
k′(xi,xj). See Appendix A for further details of prediction with the multi-GP
model.
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In the next section, we shall consider the general application of GPs to port-
folio value estimation and market risk modeling. The scope of the methodology
is therefore more general than CVA modeling.

4 Portfolio Value and Market Risk Estimation

The value of a portfolio of financial derivative contracts can be expressed as a
linear combination of the components of f , ’kernel pricing’ functions, on a set
of underlying risk factors x

π(x) =

N∑
i=1

wifi(x) (10)

We estimate the moments of the predictive distribution, p(π∗|X,Y,X∗), where
π∗ := π(X∗):

E[π∗|X,Y,X∗] = wT M̂, (11)

cov(π∗|X,Y,X∗) = wT Σ̂⊗ Ωw −wT M̂ ⊗ M̂w. (12)

where

M̂ = K ′(X∗, X)TK ′(X,X)−1Y, (13)

Σ̂ = K ′(X∗, X∗)−K ′(X∗, X)TK ′(X,X)−1K ′(X∗, X). (14)

We therefore have an expression for estimating the value of a portfolio, given the
underlying risk factors, which accounts for the dependence between the financial
derivative contracts. In general financial derivative contracts share common risk
factors in the portfolio and the risk factors are correlated.

The integral of the marginal distribution of π over x∗ ∈ X∗ gives

p(π|X,Y ) =

∫
p(π|X,Y,x∗)p(x∗)dx∗ (15)

where p(x∗) is the prior over x∗ and π is now a scalar value, depending on the
training set, and not a function of x∗. We shall see in Section 4.2 that such a
distribution will be useful in portfolio risk estimation.

Example The above concepts are illustrated in Figure 1 using a equally
weighted portfolio consisting of a long position in both a call option (left) and a
put option (center). For ease of exposition, the time to maturity of each option
is the same and assumed fixed here. In this example, there is one risk factor
which is common to both options - the underlying instrument S. Each GP has
been trained to (Black-Scholes) model as a function of S on a small number of
training points. We use a RBF kernel for the GP.

The multi-GP subsequently estimates the price of the options at a number
of test points. Some of these test points have been chosen to coincide with the
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training set and others are not in the set. The test points which are also in the
training set are observed to exhibit a zero width 95% confidence band, whereas
test points far from observed points exhibit a wide band. The value of the
portfolio at the training and test points is shown in the right hand graph. Note
that the uncertainty in the point estimates is an aggregate of the uncertainty
in the point estimate of each option price and the cross-terms in the covariance
matrix in Equations 11 and 12. We emphasize, that if single GPs are used
separately for the put and the call price, then the uncertainty in the point
estimate would neglect the cross-terms in the covariance matrix. Multi-GPs do
not, however, provide any methodology improvement in estimation of the mean.

(a) call price (b) put price (c) portfolio price

Figure 1: Using a set of training points, the predicted mean (red line) and
variance of the posterior are estimated from Equations 11 and 12 over all S∗ for
the (left) call option (center) put option and portfolio (right). The gray shaded
envelope represents the 95% confidence interval about the mean of the posterior.
The exact result, using the Black-Scholes pricing formula is given by the black
line. Note that the time to maturity of the options are fixed to one year.

4.1 Discussion

Our approach learns a kernel representation of the joint posterior distribution
over the estimated derivative prices in a portfolio. This posterior is used in
conjunction with a parameterized covariance function over the input space. It
is important to emphasize that our approach does not fit a parameterized co-
variance function over the derivative prices, only to the risk factors.

The GP model, as illustrated here, is entirely spatial and financial model
based. Specifically, the training set of the GP is a grid of risk factors and
corresponding model option prices. We then estimate the option price at a test
point, not necessary in the training set, and evaluate the means and covariance
of the posterior. Kernel learning is sufficiently flexible to allow for the function
to be non-smooth, as observed at, say, the maturity of the option.

The example here has no time dependency - we only learned a snapshot in
time of an option surface, with a time to maturity of one year. In Section 6,
we consider learning option prices as a function of underlying prices, volatility
and time to maturity - fixing time to maturity for each GP and then stepping
backward in time to give a sequence of GPs.
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We also clarify that the underlying price and volatility dynamics are kept
separate from the GP model. In using an option pricing model to train the
GP, we have tacitly assumed a data generation process for the underlying and
volatility dynamics. For example, in Section 6, we shall train a GP from a Heston
model and evaluate the CVA by simulating the price and volatility under Heston
dynamics using Monte-Carlo.

Once the ’pricing kernel layer’ - consisting of a kernel representation of the
prices of all options in the portfolio- has been learned, there is no need to evalu-
ate derivate prices with a numerical pricing formula. Hence the practical utility
of our multi-GP approach is the ability to quickly predict new option prices
and, hence, portfolio values together with an error estimate which accounts for
covariance of the derivative prices over the test points.

Moreover, the weights of the portfolio can change as the pricing kernel layer
allows for dynamic weights. Thus the predictive distribution of the portfolio
remains valid even when the portfolio composition changes. The one caveat is
that the kernels must be relearned if a new option is added to the portfolio.

In principal, a financial ’model-free’ alternative approach could be formu-
lated by only using past observed underlying prices and option prices at dif-
ferent maturities. In practice, however, it is difficult to decouple the effects of
each observed variable on the observed option prices, e.g. fixing price, implied
volatility, and varying only time to maturity. Moreover, many OTC deriva-
tives do not have comparable exchange traded instruments and can be illiquid.
Hence we have chosen to pursue an option model based approach. However, we
evaluate the potential for a model free approach in Section 6.3.

4.2 Portfolio Risk

In this section we combine our spatial kernel option pricing layer with a temporal
model for the risk factors. We hence arrive at a spatio-temporal model for
portfolio risk which accounts for the joint uncertainty in point estimation of the
financial derivative contracts.

Under a Markovian stochastic process (Xt)t≥0, the marginal distribution of
the portfolio value πt+h at time t+ h, given Xt = x, is

p(πt+h|X,Y,Xt = x) =

∫
p(π(x∗)|X,Y,x∗)p(Xt+h = x∗|Xt = x)dx∗ (16)

where the multi-variate transition density function p(Xt+h|Xt) for (Xt)t≥0 is
determined by a diffusion model or estimated from historical data. The distri-
bution of the future portfolio value depends on the uncertainty from the point
distribution p(π∗|X,Y,x∗). Note that if Xt+h = x∗ ∈ X, then the uncertainty
in the estimate π∗ is zero.

Note if the risk factor is not an observable, or the risk manager simply seeks
to express uncertainty in the current risk factor value p(Xt), then the more
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general form of Equation 16 can be used

p(πt+h|X,Y ) =

∫ ∫
p(π(x∗)|X,Y,x∗)p(Xt+h = x∗|Xt = x)p(Xt = x)dx∗.dx

(17)
In Section 6, we use Equation 17 to estimate the expected future exposure of a
portfolio and associated kernel approximation error for CVA estimation. How-
ever, our kernel approach described above is general and valid for any portfolio
risk measure such as VaR, Expected Shortfall and techniques such as stress
testing.

Computational aspects We emphasize that the benefit of using GPs is pri-
marily computational. The training time of each GP is O(n3), where n is the
number of observations. If the option depends on several risk factors, then
n =

∏
i ni, where ni are the number of grid points per risk factor. Note that

although each kernel matrix KX,X is n × n, we only store the n-vector α for
each option, which brings reduced memory requirements.

4.2.1 Simulation

Typically p(Xt+h = x∗|Xt = x) is not known in closed form and must be
estimated with Monte-Carlo simulation. Hence, our approach combines Monte-
Carlo simulation with MGP pricing to estimate the portfolio risk. We refer to
this approach as MC-MGP.

5 CVA

As an example of a portfolio risk application, we consider the estimation of
counter-party credit risk on a client portfolio. In this case the weights wi in
(10) are typically 0 or 1. The expected loss to the investor, associated with the
counterparty defaulting, is given by the unilateral CVA. CVA is the expected
cost of the default risk, or equivalently, the expected cost of counterparty risk.
Taking expectations with respect to the risk neutral measure for a numeraire
Nt at time t, the loss from recovery on the market value of the portfolio is given
by

CVA0 = (1−R)

∫ T

0

E[π+
uN

−1
u δ(u, τ)du] (18)

where πt is the value of the portfolio and τ is the default time. If the default
is independent of both the portfolio value and the numeraire then the above
expression simplifies to

CVA0 = (1−R)

∫ T

0

E[π+
uN

−1
u ]p(u)du, (19)
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where π(X)t is assumed to only depend on time only through the market risk
factors Xt (i.e. the portfolio weights are fixed in time), and p(t) is default
probability density function. To hedge the CVA, a set of n dates t1, . . . , T = tn
is chosen over which to evaluate the expected positive exposure E[π+

t N
−1
t ].

A multivariate stochastic process (Xt)t≥0 determines the market risk factors,
such as asset price processes, which govern the portfolio’s market value. The
discounted asset price processes are martingales with respect to an equivalent
martingale measure. The contingent claims, such as options, are priced with
respect to this same measure.

The credit risk component of CVA can be modeled in reduced form with
a Poisson default model. Under a deterministic hazard rate, interval default
probabilities in period [ti, ti+1) for the counterparty are given by the difference
of the exponential survival probabilities

P (ti ≤ τ < ti+1) = exp{−
∫ ti

s=0

λ(s)ds} − exp{−
∫ ti+1

s=0

λ(s)ds} (20)

which can be approximated, for example, by the discrete time evolution of
piecewise linear hazard rate λ(s)

∆pi := pi − pi+1 := exp{−
i−1∑
j=0

(tj+1 − tj)λj} − exp{−
i∑

j=0

(tj+1 − tj)λj}. (21)

5.1 Multi Gaussian Process Regression estimation of CVA

Starting with a Monte-Carlo estimate of the CVA over M paths, along which
the market risk factors are sampled:

CVAM =
(1−R)

M

M∑
j=1

n∑
i=1

π(X
(j)
ti )+(N

(j)
ti )−1∆pi (22)

we replace the exact derivative prices with the mean of the posterior function
conditioned on the simulated market risk factors Xti :

ĈVAM =
(1−R)

M

M∑
j=1

n∑
i=1

|E[π∗|X,Y,x∗ = X
(j)
ti ]|+(N

(j)
ti )−1∆pi (23)

and MGP error estimate, based on the covariance of the posterior of π∗, evalu-
ated over each sample path:

εM =
(1−R)

M

M∑
j=1

n∑
i=1

1(E[π∗|··· ]>0)cov(π∗|X,Y,x∗ = X
(j)
ti )(N

(j)
ti )−1∆pi. (24)

The above approximation uses Gaussian Process regression to estimate the
potential future exposure of the portfolio. We note that the pricing models
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are still fitted to model generated data, assuming a data generation process for
the risk factors. However, we have used machine learning to learn derivative
exposure as a function of the underlying and other parameters such as time to
maturity, by slicing in time. In this way, we avoid nested Monte-Carlo simula-
tions, which are computationally intractable for large portfolios. Moreover, the
multi-GP regressions provides an estimation of the amount of error in the point
estimation of the portfolio value.

6 Numerical Experiments

In the following example, we use our MC-MGP simulation to estimate the CVA
of the portfolio from Equations 23 and 24. For simplicity, we continue the exam-
ple shown in Section 4 - the portfolio holds a long position in both a European
call and a put option struck on the same underlying. The only difference be-
tween the earlier example is that we now assume that the underlying follows
Heston dynamics:

dSt
St

= µdt+
√
VtdW

1
t , (25)

dVt = κ(θ − Vt)dt+ σ
√
VtdW

2
t , (26)

E[dW 1
t · dW 2

t ] = ρdt. (27)

where the notation and fixed parameter values used for experiments are given
in Table 1 under µ = r0. We use a Fourier Cosine method (Fang and Oosterlee,
2008) to generate the European Heston option price training and testing data
for the GP. We also use this method to compare the GP Greeks, obtained by
differentiating the kernel function.

Parameter description Symbol Value
Mean reversion rate κ 0.1
Mean reversion level θ 0.15
Vol. of Vol. σ 0.1
Risk free rate r0 0.002
Strike K 100
Maturity T 1.0
Correlation ρ −0.9

Table 1: This table shows the values of the parameters for the Heston dynamics
and terms of the European Call and Put option contracts.

For the corresponding intervals used for the CVA estimate, we simultane-
ously fit a multi-GP to both gridded call and put prices over price and volatility,
keeping time to maturity fixed. Figure 2 shows the gridded call (top) and put
(bottom) price surfaces at various time to maturities, together with the GP
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estimate. Within each column in the figure, the same GP model has been si-
multaneously fitted to both the call and put price surfaces over a 30 × 30 grid
Ωh ⊂ Ω := [0, 1] × [0, 1] of prices and volatilities3, fixing the time to maturity.
The scaling to the unit domain is not essential. However, we observed superior
numerical stability when scaling.

Across each column, corresponding to different time to maturities, a different
GP model has been fitted. The GP is then evaluated out-of-sample over a 40×40
grid Ωh′ ⊂ Ω, so that many of the test samples are new to the model. This
is repeated over various time to maturities corresponding to, say, the hedging
periods in a CVA model. The option model versus GP model are observed to
produce very similar results.

Table 1 lists the values of the parameters for the Heston dynamics and terms
of the European Call and Put option contract used in our numerical experiments.
Tables 2 and 3 show the values for the Euler time stepper used for simulating
Heston dynamics and the credit risk model.

(a) Call: T − t = 1.0 (b) Call: T − t = 0.5 (c) Call: T − t = 0.1

(a) Call: T − t = 1.0 (b) Call: T − t = 0.5 (c) Call: T − t = 0.1

Figure 2: This figure shows the gridded call (top) and put (bottom) price sur-
faces at various time to maturities, together with the GP estimate. Within each
column in the figure, the same GP model has been simultaneously fitted to both
the call and put price surfaces over a 30 × 30 grid of prices and volatilities,
fixing the time to maturity. Across each column, corresponding to different time
to maturities, a different GP model has been fitted. The GP is then evaluated
out-of-sample over a 40 × 40 grid, so that many of the test samples are new
to the model. This is repeated over various time to maturities corresponding to
hedging periods.

Figure 3 compares the (left) full-MC and MC-MGP estimate of the expected
positive exposure of the portfolio over time. The error in the MC-MGP estimate

3Note that the plot uses the original coordinates and not the re-scaled co-ordinates.
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Parameter description Symbol Value
Number of simulation M 1000
Number of time steps ns 100
Initial stock price S0 100
Initial variance V0 0.1

Table 2: This table shows the values for the Euler time stepper used for market
risk factor simulation.

Constant hazard rate λ 0.1
Number of default horizons n 10
Recover rate R 0.4

Table 3: This table shows the parameters of the reduced form credit risk model
used for estimating the CVA in our numerical experiments.

and 95% uncertainty band, exclusive of the MC sampling error, is also shown
against time (right).

Figure 4 shows how the error in the MC-MGP CVA estimate versus MC
with full portfolio evaluation decays against the number of training samples
used for each GP model. The 95% confidence band of the MC-MGP prediction,
exclusive of the MC sampling error, is also shown. Note that while the training
samples are varied, the 40× 40 testing set remains fixed during the experiment.

Figure 3: (Left) Full-MC and MC-MGP estimate of the expected positive expo-
sure of the portfolio over time. The two graphs are practically indistinguishable,
with one graph superimposed over the other. (Right) The error in the MC-MGP
estimate and 95% uncertainty band (exclusive of the MC sampling error) is also
shown against time.

6.1 CVA VaR

In this section, we demonstrate the application of GPs to the estimation of
the Value-at-risk (VaR) of a one year incremental CVA. The purpose of the
calculation is to estimate, at a given confidence level, the extent which to the
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Figure 4: This figure shows how the percentage error in the MC-MGP CVA
estimate versus MC with full portfolio evaluation decays against the number of
training samples used for each GP model. The 95% confidence band in the GP
prediction is also shown centered about MC-MGP CVA estimation error.

CVA will increase over the next year. More precisely, we estimate the loss
distribution corresponding to the one year ahead CVA minus the CVA0 estimate.

We model the CVA process as

1t<τCV A(t,Xt) = 1t<τE[1τ<TC(τ, St) | St, t < τ ] (28)

where the intensity λ is assumed constant, under zero interest rates. Figure 5
shows the CVA VaR, as estimated with a full MC and a MC-MGP method.
In order to isolate the effect of the MGP approximation, we use identical ran-
dom numbers for each method. The left hand plots compares the full-MC and
MC-MGP out-of-sample estimate of the CVA loss distribution; the two graphs
are practically indistinguishable, with one graph superimposed over the other.
Note that the reason for the sharp approximation is two-fold: (i) the statisti-
cal experiment has been configured as an interpolation problem, with many of
the gridded training points close to the gridded test points; and (ii) the train-
ing sample size of 900 is relatively large to approximate smooth surfaces (with
no outliers). The right hand plot shows the error between the full MC and
MC-MGP estimate as a distribution of the CVA loss.
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Figure 5: (Left) full-MC and MC-MGP out-of-sample estimate of the CVA loss
distribution; the two graphs are practically indistinguishable, with one graph
superimposed over the other. Note that the reason for the sharp approximation
is two-fold: (i) the statistical experiment has been configured as an interpolation
problem, with many of the gridded training points close to the gridded test points;
and (ii) the training sample size of 900 is relatively large to approximate smooth
surfaces (with no outliers). (Right) The error between the full MC and the
MC-MGP estimate as a distribution of the CVA loss.

6.2 Derivatives

The GP provides analytic derivatives with respect to the input variables

∂X∗E[f∗|X,Y,X∗] = ∂X∗µX∗ + ∂X∗KX∗,Xα, (29)

where ∂X∗KX∗,X = 1
`2 (X − X∗)KX∗,X and recall that α = [KX,X + σ2I]−1y.

Note that α is already calculated at training time (for pricing) by Cholesky
matrix factorization of [KX,X + σ2I] with O(n3) complexity, so there is no
significant computational overhead from greek estimation. Once the GP has
learned the derivative prices, Equation 29 is used to evaluate the first order
Greeks with respect to the input variables over the test set. Example source
code illustrating the implementation of this calculation using given in Section
B.

Figure 6 shows the GP estimate of the call option’s vega ν (left), having
trained on the volatility and Heston Cosine option model prices, fixing the
underlying asset price for simplicity of computations. For avoidance of doubt,
the model is not trained on the Heston Cosine model vegas. For comparison in
the figure, the Heston Cosine estimate of ν is also shown. The two graphs are
practically indistinguishable, with one graph superimposed over the other. The
error in the vega estimate is observed to converge with the number of training
samples for the GP. Note that the number of training samples is relatively small
compared to other experiments in this section on account of our choice to fix S
and train on volatility and option prices.
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Figure 6: This figure shows the GP estimate of the call option’s vega ν (left),
having trained on the volatility and Heston Cosine option model prices, fixing the
underlying asset price for simplicity of computations. For avoidance of doubt,
the model is not trained on the Heston Cosine model vegas. For comparison in
the figure, the Heston Cosine estimate of ν is also shown. The two graphs are
practically indistinguishable, with one graph superimposed over the other. The
error in the vega estimate is observed to converge with the number of training
samples for the GP.

6.3 Model free price estimation

In this section, we estimate equity option prices from historical observations
of underlying price, time-to-maturity, strike, volatility, option type and option
prices. In our dataset4 each option chain is observed over four snapshots in
time. For each chain, we separate calls and puts and construct a training set
from the moneyness, volatility, time-to-maturity and option price using three of
the snapshots (approximately 1300 observations). The most recent snapshot is
reserved for testing.

Figure 7 compares the (left) GP estimate of the call prices (blue), having
trained from the joint observations of the moneyness, maturity and volatility,
with the observed out-of-sample call prices (red). The training data is shown
with gray points. Note that the volatility is not shown in the figure. (Right)
The error in the GP estimate, with and without volatility as an input variable,
is compared with the observed call prices in the test set against moneyness for
a fixed maturity (2 years). We note that the figure shows the importance of
including volatility as an input variable. In particular, the uncertainty in the
GP estimate is observed to be large if the volatility is excluded.

4The dataset has been downloaded from https://mamamomama.org on September 20th,
2018.
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Figure 7: This figure compares the (left) GP estimate of the call prices (blue),
having trained from the joint observations of the moneyness, maturity and
volatility, with the observed out-of-sample call prices (red). The training data
is shown with gray points. Note that the volatility is not shown in the figure.
(Right) The error in the GP estimate, with and without volatility as an input
variable, is compared with the observed call prices in the test set against mon-
eyness for a fixed maturity (2 years).
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7 Conclusion

This paper introduces a MC-MGP approach for fast evaluation of derivative
portfolios and their risk. The approach is demonstrated by estimating the CVA
on a simple portfolio with numerical studies of accuracy and convergence of MC-
MGP estimates. The primary advantage of kernel learning over Monte-Carlo
with full repricing is computational - there is no need to use expensive derivative
pricing functions for risk point estimates once the kernels have been learned. The
kernels permit a closed form approximation for the sensitivity of the portfolio
risk to the risk factors and the approach preserves the flexibility to rebalance
the portfolio. However, the advantage is more than just computational. The
risk estimation approach is Bayesian - the uncertainty in a point estimate which
the model hasn’t seen in the training data is quantified and can be factored into
the risk estimate. Additionally, derivatives of the pricing kernel layer are given
analytical and hence avoid the use of numerical differentiation.

A Prediction with Multi-GPs

To predict a new variable f∗ = [f∗1, . . . , f∗m] at the test locationsX∗ = [xn+1, . . . ,xn+m],
the joint distribution of the training observations Y = [y1, . . . ,yn] and the pre-
dictive targets f∗ are given by[

Y
f∗

]
∼MN

(
0,

[
K ′(X,X) K ′(X∗, X)T

K ′(X∗, X) K ′(X∗, X∗)

]
,Ω

)
, (30)

where K ′(X,X) is an n×n matrix of which the (i, j)-th element [K ′(X,X)]ij =
k′(xi, xj), K

′(X∗, X) is anm×nmatrix of which the (i, j)-th element [K ′(X∗, X)]ij =
k′(xn+i, xj), and K ′(X∗, X∗) is an m × m matrix with the (i, j)-th element
[K ′(X∗, X∗)]ij = k′(xn+i, xn+j). Thus, taking advantage of conditional distri-
bution of multivariate Gaussian process, the predictive distribution is

p(vec(f∗)|X,Y,X∗) = N (vec(M̂), Σ̂⊗ Ω̂), (31)

where

M̂ = K ′(X∗, X)TK ′(X,X)−1Y, (32)

Σ̂ = K ′(X∗, X∗)−K ′(X∗, X)TK ′(X,X)−1K ′(X∗, X), (33)

Ω̂ = Ω. (34)

Additionally, the expectation and the covariance are obtained,

E[f∗|X,Y,X∗] = M̂, (35)

cov(vec(f∗)|X,Y,X∗) = Σ̂⊗ Ω̂. (36)

The hyperparameters and elements of the covariance matrix Ω are found by
minimizing the negative log marginal likelihood of observations:

L(Y |X,λ,Ω) =
nd

2
ln(2π) +

d

2
ln |K ′|+ n

2
ln |Ω|+ 1

2
tr((K ′)−1Y Ω−1Y T ). (37)
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B GP Greeks

This Python 3.0 code, using scikit-learn excerpt illustrates how to calculate
the derivative of the option by differentiating the GP price model. If x are
gridded volatilities, then f prime is the estimate of the vega. If x were gridded
underlying prices, then f prime is the estimate of the delta.

x = np.linspace(0.01,1.0, training_number)

x_train = np.array(x, dtype=’float32’).reshape(training_number, 1)

y_train = []

for idx in range(len(x_train)):

y_train.append(PyHeston.HestonCall(S0, x_train[idx], K, time, r, lmbda, meanV, sigma, rho, 0.4))

y_train = np.array(y_train)

gp = gaussian_process.GaussianProcessRegressor(kernel=sk_kernel, n_restarts_optimizer=20)

gp.fit(x_train,y_train)

y_pred, sigma_hat = gp.predict(x_test, return_std=True)

k_s = rbf(x_test, x_train)

k_s_prime = np.zeros([len(x_test), len(x_train)])

for i in range(len(x_test)):

for j in range(len(x_train)):

k_s_prime[i,j]=(1.0/l**2)*(x_train[j]-x_test[i])*k_s[i,j]

f_prime = np.dot(k_s_prime, alpha_p)
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Abbas-Turki, L. A., S. Crépey, and B. Diallo (2018, February). XVA Principles,
Nested Monte Carlo Strategies, and GPU Optimizations. working paper or
preprint.

Antonov, A., S. Issakov, A. McClelland, and S. Mechkov (2018). Pathwise XVA
Greeks for early-exercise products. Risk Magazine (January).

Capriotti, L., J. L. and M. Peacock (2011). Real-time counterparty credit risk
management in monte carlo. Risk 24 (6).

Capriotti, L. (2011). Fast greeks by algorithmic differentiation. Journal of
Computational Finance 14 (3), 3–35.
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