Introduction
@ We study simulations of the
edge region of a Tokamak
magnetic confinement fusion
reactor using UEDGE.
@ UEDGE is a 2D parallel edge
plasma application developed by T.
Rognlien et al. (LLNL)

@ UEDGE is one of the edge plasma transport
components in FACETS.
@ FACETS: Framework Application for Core-Edge Transport
Simulations based at Tech-X Corporation
@ Pl: John Cary, https://www.facetsproject.org
@ FACETS goal: Strong coupling between core, edge and wall
Tokamak regions during simulation

Governing Physics
UEDGE uses a fluid transport model, conserving
particles, momentum and energy.
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Ill-conditioned simulations Diffusion

@ Impurities in the plasma arise from:
@ Plasma sputtering of material walls, and
@ Edge transport competing with ionization/recombination.
@ Solving each charge state (or bundle) creates large systems.

Algorithms
@ Implicit time discretization with nonlinear solves via

preconditioned Jacobian-free Newton-Krylov
@ The choice of preconditioner is vital to achieving scalability

@ PETSc is used to conduct the simulation in parallel
@ Early experiments showed limited scalability

@ The direct solver becomes overwhelmed by the cost of LU
factorization and associated communication.
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Results: Scalability for More Complex Problems
@ FieldSplit performs well for larger time steps, so long as the plasma

Motivating a Physics Preconditioner
Physics issues to consider for computational stability/accuracy/efficiency:

@ Solving plasma and neutral equations on the same mesh —
simplifies their strong coupling; this is helpful to ensure an J
accurate simulation.

@ Wall particle recycling and ionization can result in long physical times to
reach equilibrium; this competes with the fast edge plasma transport.

@ To accommodate the dominant plasma transport, the
discretization is highly anisotropic. A
@ For standard At the plasma terms are well-conditioned enough to use an Ra'iafwidth

easily scalable preconditioner such as Additive Schwarz. is much

@ However, neutral collisional diffusive transport is isotropic, and  9reater than
very ill-conditioned on an anisotropic mesh. poloidal

This physical knowledge implies that separate methods should be used to

precondition the plasma and neutral terms within the nonlinear solver.

Designing a Physics Preconditioner: FieldSplit

1D radial partition ( | FieldSplit Preconditioner
Additive Schwarz Preconditioner Sample grid , P N
Field A mm All Plasma Different precondltlo.ner.s may l?e used
Only coupling within a partition is Field B ™ Neutral density for each component in .Fle|d5.p|l.t:
retained, and all partitions must be Field C Neutral velocity _ Algebraic Multigrid
preconditioned similarly ~~~~~ Additive Schwarz Full LU
Important coupling within fields B é : |
and C are ignored because of their % : |
distance in the domain : |
3 & : |
. 1RRR
| : X |
_____ R & & |
._ _: | |
7.0"% : v
| ! s Field A generally has many N 7
. ! . Additional 7
--- \ﬂ---li----ﬂ---& A variables and is weakly 7//%
\ . overlap: // 7
§ % - . Qgr_eciu_ir_eg coupled poloidally. — L2224
&--- :____._' ___ i |increased . T T
x\\\ %ﬁ: i message Fields B and C are coupled . . .
\ \I : Sssin throughout the domain. Optional retention of coupling between
\ \‘ | rﬂ P 9 \ ) fields via Schur complement

Results: FieldSplit Preconditioning

@ Initial FieldSplit structure - 2 separate fields preconditioned individually:
@ Field 1: 4 plasma terms solved with Additive Schwarz
@ Field 2: 1 neutral term solved with Algebraic Multigrid

@ Component preconditioners are added together
@ Coupling terms between fields are disregarded during preconditioning.
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@ By handling the troublesome fields (neutral gases) separately we can use a
more scalable solver on the easier fields (plasma).

@ 1D partitioning allows for the majority of fields (plasma) to be on their more
optimal domain.
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terms can still be solved scalably.
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@ Initially the neutral D velocity was computed with a simpler algebraic
model. Below are results with its inclusion in the nonlinear solve.
@ A 2D partitioning is preferred for this problem, which is first available at NP=8.
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@ We also enjoy improved performance in the presence of a Neon
impurity and the 11 new individual fields added as a resullt.
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Conclusions

@ FieldSplit overcomes a major
obstacle to parallel scalability for
an implicit coupled neutral/plasma
edge model.

@ This allows greatly reduced runtimes
when using multiple processors.
@ Little code manipulation is required.

@ Jacobian-free Newton-Krylov
within PETSc using FieldSplit
preconditioning provides flexibility
for optimizations such as
@ Redundant preconditioning on

comparatively small fields,
@ Variable Additive Schwarz overlap, and
@ Jacobian lagging both within and
across time steps.
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Future Work

@ As different species (e.g., He and
C) are added and larger At used,

how can FieldSplit be optimized?

@ The goal of the FACETS project is
Core-Edge-Wall coupling
@ How can this physics preconditioning
be applied in a multiphysics setting?
@ What techniques developed here can

be used in 3D edge codes, e.g.,
BOUT++?

@ Coupling terms can be retained
via the Schur complement.
@ Cost is greater than Additive FieldSpilit.
@ While not needed so far, will this
coupling be useful in multiphysics
preconditioning?
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