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Introduction
@ We study simulations of the edge region of a Tokamak
magnetic confinement fusion reactor using UEDGE.

@ UEDGE is a 2D parallel edge plasma application developed by

T. Rognlien et al. (LLNL)

@ UEDGE is one of the edge plasma transport
components in FACETS
@ FACETS: Framework Application for Core-Edge Transport
Simulations based at Tech-X Corporation
@ Pl: John Cary, https://www.facetsproject.org
@ FACETS goal: Strong coupling between core, edge and wall
Tokamak regions during simulation

Governing Physics

@ UEDGE uses a fluid transport model conserving

particles, momentum and energy.
@ Challenges in edge region simulations
@ Strong nonlinearities
@ Competing demands of plasma and neutral gases
@ Large range of spatial and temporal scales
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@ Simulations use At € [10~*,107] s, appropriate for

coupling to time-dependant core models.
@ Numerous coupled variables in the basic simulation

@ Hydrogen ion H" temperature, density, parallel velocity
@ Electron e temperature and Neutral Hydrogen H density

@ Impurity charge states add many more variables

Algorithms

@ Implicit time discretization with nonlinear solves via
preconditioned Jacobian-free Newton-Krylov
@ The choice of preconditioner is vital to achieving scalability

@ PETSc is used to conduct the simulation in parallel
@ Early experiments showed limited scalability

@ The direct solver becomes overwhelmed by the cost of LU
factorization and associated communication.
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Partitioning and Mixed Preconditioners

@ To improve the scalability of the solver we must examine the partitioning
1D decomposition
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@ The physics at work have contrary demands on scalabillity
@ Neutral gas terms prefer a 2D partition
@ Plasma transport terms prefer a 1D partition
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Results: FieldSplit Preconditioning

@ To leverage our knowledge of competing partition demands we can:
@ Work on a 1D partition, preferred by plasma variables
@ Use the ASM to solve the plasma terms, with a direct solve on each domain
@ Solve the neutral terms with an isotropic-appropriate solver, multigrid (AMG)
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@ FieldSplit preconditioning is available in PETSc

@ The simplest version of FieldSplit is Additive, where each component has a
separate solve and all coupling terms are neglected
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@ By handling the troublesome terms (neutral gases) separately we can use a
more scalable solver on the easier terms (plasma).

@ 1D partitioning allows for the majority of variables (plasma) to be on their natural domain.
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Results: Scalability for More Complex Problems

@ Initially the neutral H velocity was computed with a simpler algebraic
model. Below are results with its inclusion in the nonlinear solve.

@ A 2D partitioning is preferred for this problem, which is first available at NP=8.
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@ We also enjoy improved scalabllity in the presence of a Neon impurity
and the 11 new variables added as a result.
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Conclusions and Future Work
@ FieldSplit overcomes a major limitation to parallel scalability for a

combined neutral/plasma edge model.
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@ Will we lose scalability as At — 1 as needed in steady-state problems?
@ As the number of partitions in the domain increases communication
becomes a greater proportion of each processor’s work.
@ To minimize this communication cost, present in FieldSplit, we want to try redundant
preconditioning on small blocks.
@ How can the overlap between domains in ASM be increased to improve speed?
@ Will lagging the Jacobian evaluations hurt scalability?
@ The goal of the FACETS project is Core-Edge-Wall coupling
@ How can this physics preconditioning be applied in such a multiphysics setting?
@ What more complicated FieldSplits are possible?

@ Coupling terms can be retained via the Schur complement
(S~ (A1 — A2A;1A3)), although at greater cost than Additive FieldSplit
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@ While not needed so far, will this coupling be useful in multiphysics preconditioning?
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