
Parameterization Schemes and Their Quality in Kernel Interpolation

Michael McCourt

January 2, 2014

Abstract

When performing interpolation with a kernel basis, the choice of kernel can play a significant role in the
accuracy of the interpolation. Unfortunately, choosing a “good” kernel is a difficult proposition because of the
wide variety of kernels available. To simplify this process, often a family of kernels is considered which differ by
one or more free parameters while still retaining many of the same interpolation properties. Gaussians are an
example of one such kernel, whose shape parameter allows for variable localization. Our goal is to consider several
parameterization schemes for Gaussians and to develop a mechanism for comparing these schemes so that we can
determine which is effective under what circumstances.

1 Introduction

Kernel interpolation is discussed in [2, 8, 7] and many other books. It is a useful tool for approximating scattered
data and appears in both approximation theory (through reproducing kernel Hilbert spaces) and in spatial statistics
(through Kriging). We believe that by leveraging knowledge from both of these fields we can improve upon the
existing literature. There is another writeup of this content by Fred Hickernell available at

http://math.ucdenver.edu/∼mmccourt/hsp.pdf

although the notation is somewhat in conflict with what I have written here. Still, it is a fantastic writeup and may
help to supplement this discussion.

In both these settings, we are provided data

X = {x1, . . . ,xN}, y =

 y1
...
yN

 , xi ̸= xj for i ̸= j,

where xi ∈ Ω ⊆ Rd and yi ∈ R. Our goal is to somehow make “good” guesses about values of y at x ∈ Ω locations
where data does not exist.

A kernel K : Ω × Ω → R is any symmetric function of two variables. For this work, we restrict K to the set of
positive definite kernels, which are kernels such that∫

Ω

∫
Ω

K(x, z) v(x) v(z) dxdz > 0

for any v ∈ L2(Ω) not identically zero. This has another (more useful) definition involving the eigenvalues of a
specific linear operator, but we’ll worry about that if we need it.

Kernels can take lots of different forms and have lots of different properties, but probably the most common form
of a kernel is a radial basis function, which is a kernel of the form

K(x, z) = ϕ(∥x− z∥), x,z ∈ Ω.

Notice that ϕ : R+ → R is a function of one variable instead of Rd which is one of the many reasons why radial
kernels are nice. The kernel of main interest right now will be the Gaussian kernel

K(x, z) = exp
(
−ε2∥x− z∥2

)
; (1.1)

the norm used above is the 2-norm and the value ε > 0 is a shape parameter which can be chosen freely. The
“correct” choice of ε is an important component in making “good” guesses about unobserved (x, y) values.

1

1.1 Scattered Data Interpolation

In the interpolation setting, we assume that data we are given {(xi, yi)}Ni=1 has been generated by some function f
such that yi = f(xi). That function is deterministic, and we assume f ∈ L2(Ω); it is also common to assume that f
is in a certain Hilbert space, but we will state when that assumption is made explicitly.

To make guesses of y values at unobserved x locations, we create an interpolant s of f , and then evaluate s(x).
Because we are performing kernel interpolation, s uses a linear combination of kernel functions

s(x) =

N̂∑
k=1

ckK(x, zk),

where zk for 1 ≤ k ≤ N̂ are the so-called kernel centers that distinguish the different elements of the basis.
Often times, we will prefer to write the interpolant as a vector inner product,

s(x) = k(x)T c, (1.2)

using

k(x) =

K(x,x1)
...

K(x,xN)

 , c =

 c1
...
cN

 .

To be explicit, we should probably write kX (x) to remind ourselves that our basis is data-dependent, but we will
omit it for now. To solve the interpolation problem we require s(xi) = yi for 1 ≤ i ≤ N , which produces the linear
system  y1

...
yN

 =

 s(x1)
...

s(xN)

 =

k(x1)
T c

...
k(xN)T c

 =

k(x1)
T

...
k(xN)T

 c,
or, more succinctly,

Kc = y, K =

k(x1)
T

...
k(xN)T

 . (1.3)

Because K is a positive definite kernel, we are guaranteed that K is a symmetric positive definite matrix. This
implies that kernel-interpolation is well-defined in any dimension, in contrast to polynomial interpolation. Using this
definition of c in (1.2) gives

s(x) = k(x)TK−1y, (1.4)

which explicitly shows how values at unobserved locations are a weighted averaging of the given data.
To try to estimate the error associated with your kernel interpolation, some theory exists to help, although it

may not be as useful as we would like. We can bound the pointwise error of the interpolant (a big deal) by the native
space norm of the function (incomputable):

|f(x)− s(x)| ≤ PK,X (x)∥f∥HK(Ω), f ∈ HK(Ω), (1.5)

where PK,X (x) is the so-called power function. The norm in HK(Ω) is called the native space norm, and that means
the Hilbert space norm of f for the Hilbert space induced by the kernel K. Computing that is not possible without
the Hilbert-Schmidt decomposition of the kernel, but note that the value of ∥f∥HK(Ω) is dependent on the kernel K.
The power function is defined as

PK,X (x) =
√
K(x,x)− k(x)TK−1k(x) (1.6)

and comes about from some standard reproducing kernel manipulations [2] written up in the appendix.
In the definition of the Gaussian (1.1), there is an ε value which serves as the shape parameter of the basis: small

ε produces flat kernels, and large ε produces peaked kernels. These differences can be seen in Figure 1.

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) ε = 10, condition≈1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) ε = 1, condition≈106

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) ε = .5, condition≈109

Figure 1: Gaussian basis functions centered at 6 points in [0,1]. The choice of shape parameter affects the “width”
or “locality” of the kernels. The condition of the K interpolation matrix is also listed.

1.1.1 Hilbert-Schmidt SVD

The following derivation took place in [1] so I’m not going to go too in depth here. I just want to introduce the
notation for use later as necessary.

Positive definite kernels have eigenvalues and eigenfunctions defined by the Hilbert-Schmidt integral operator∫
Ω

K(x, z)φn(z)ρ(z)dz = λnφn(x), (1.7)

where ρ is a suitable weight function. For Gaussians (our main focus right now) this discussion appears primarily in
[3], where the values of ρ, λn and φn are explicitly stated. We assume that Ω = Rd. It is relevant to note that as
ε→ 0, λn ≈ ε2n, which is the main cause of Gaussian ill-conditioning.

These eigenvalues are all positive, because K is a positive definite kernel, and decreasing, i.e., λ1 ≥ λ2 ≥ . . . > 0;
their (infinite) sum is finite because the Hilbert-Schmidt operator is a trace class operator. The eigenfunctions satisfy
the orthonormality property ∫

Ω

φm(x)φn(x)ρ(x)dx =

{
1 m = n,

0 m ̸= n,

which might also be written as ⟨φm, φn⟩L2(ρ) = δm,n. Another important orthogonality property of the eigenfunctions
involves the Hilbert space inner product. Recall first the reproducing property

⟨f,K(·,x)⟩HK = f(x), f ∈ HK

which was discussed and used in the Appendix. Because φm ∈ HK for n = 1, 2, . . ., and using (1.7) to write
φm = 1

λm

∫
Ω
K(·,z)φm(z)ρ(z)dz, we know that

⟨φm, φn⟩HK
=

⟨
1

λm

∫
Ω

K(·,z)φm(z)ρ(z)dz, φn

⟩
HK

=
1

λm

∫
Ω

⟨K(·, z), φn⟩HK
φm(z)ρ(z)dz

=
1

λm

∫
Ω

φm(z)φm(z)ρ(z)dz =
δmn

λm
(1.8)

These eigenvalues/functions allow us to write the kernel K as a Mercer’s series (or Hilbert-Schmidt series)

K(x, z) =
∞∑

m=1

λmφm(x)φm(z)

which means that the kernel basis vector k can be written as

k(x)T = ϕ(x)TΛΦT

3

for ϕ(x)T =
(
φ1(x) · · · φN (x) · · ·

)
, which is an infinite length vector, and

Λ =


λ1 |

. . . |
λN |

|
. . .

 =

(
Λ1

Λ2

)
, Φ =

ϕ(x1)
T

...
ϕ(xN)T

 =
(
Φ1 Φ2

)

where Λ1,Φ1 ∈ RN×N and Λ2 and Φ2 are the (infinite-sized) rest of the matrices Λ and Φ respectively. Eigenfunctions
can be chosen so that Φ−1

1 exists, and, because K is a positive definite kernel, λn > 0 for 1 ≤ n < ∞ thus we know
that Λ−1

1 exists. This allows us to write

ΛΦT =

(
Λ1

Λ2

)(
ΦT

1

ΦT
2

)
=

(
IN

Λ2Φ
T
2 Φ

−T
1 Λ−1

1

)
Λ1Φ

T
1 .

Using this in our k definition above gives

k(x)T = ϕ(x)T
(

IN
Λ2Φ

T
2 Φ

−T
1 Λ−1

1

)
︸ ︷︷ ︸

ψ(x)T

Λ1Φ
T
1 = ψ(x)TΛ1Φ

T
1 . (1.9)

Substituting this into our interpolation matrix K from (1.3) gives

K =

k(x1)
T

...
k(xN)T

 =

ψ(x1)
TΛ1Φ

T
1

...
ψ(xN)TΛ1Φ

T
1

 =

ψ(x1)
T

...
ψ(xN)T

Λ1Φ
T
1 = ΨΛ1Φ

T
1 , (1.10)

which is the Hilbert-Schmidt SVD. This is a useful decomposition because much of the ill-conditioning of K resides
in Λ1 (subject to some appropriate design choices discussed in [3]). Using (1.10) and (1.9) in (1.4) gives

s(x) = k(x)TK−1y = ψ(x)TΛ1Φ
T
1 (ΨΛ1Φ

T
1)

−1y = ψ(x)TΨ−1y (1.11)

which shows that the Hilbert-Schmidt SVD allows for a change of basis from the unstable basis k(x) to the stable
basis ψ(x).

1.2 Kriging

This section I am less confident about, especially regarding notation, so please correct as needed. We’ll start with
the idea of a probability space (W,A, P) where W is the sample space of all possible outcomes, A is a σ-algebra
and P is a probability measure. Normally, I think statisticians and probabilists would use Ω instead of W, but we’re
already using Ω for something else.

We need to define a parameter space Ω, which for our purposes right now will be Ω = Rd. In numerical analysis,
this is the domain over which we would consider evaluating our interpolant. A function Y : Ω,W → R (evaluated
as Y (x, ω) for x ∈ Ω and ω ∈ W) is a random field if, for every x ∈ Ω, Y is an A-measurable function of ω. Our
notation for this is

Random Field: Y = {Yx}x∈Ω.

Note that

• For a fixed x, Yx = Y (x, ·) is a random variable.

• For a fixed ω, y(·) = Y (·, ω) is a deterministic function of x referred to as a realization of the random field.

The mean of Y is a function µY which is defined at any point x ∈ Ω as

µY (x) = E(Yx) =
∫
W
Yx(ω)dP (ω) =

∫
R
ydFYx(y)

4

where FYx is the cumulative distribution function of Yx. For our purposes we will assume that Yx is continuous, thus
we can write

µY (x) =

∫
R
ypYx(y)dy

for density function pYx . Likewise, we will define the covariance kernel of Y as

K(x, z) = Cov(Yx, Yz) = E((Yx − µY (x))(Yz − µY (z))) = E(YxYz)− µY (x)µY (z), (1.12)

after some appropriate manipulations. We are not using the notation KY here, unlike µY , to later emphasize the
similarities between Kriging and kernel approximation.

Our assumption here is that the random field Y is a Gaussian random field, which we denote as

Y ∼ GF (µY ,K).

This implies that, for a finite set of points X = {x1, . . . ,xN} ∈ Ω, the vector of random variables Y X =(
Yx1 · · · YxN

)T
has the distribution

Y X ∼ N (µ,K), (1.13)

where µ = E(Y X) and (K)i,j = Cov(Yxi , Yxj). This multivariate normal distribution has the density

pY X (y) =
1√

2π det(K)
exp

(
−1

2
(y − µ)TK−1(y − µ)

)
, (1.14)

and the term (y−µ)TK−1(y−µ) is sometimes referred to as the Mahalanobis distance. Note that K will be symmetric
positive definite for a positive definite covariance kernel K, which must be positive definite or else a negative variance
could occur. As a result, K−1 must exist, though it may be ill-conditioned.

At this point, we are going to restrict our concern to zero-mean Gaussian processes, which demands that µY ≡ 0;
in Kriging literature, this is referred to as “simple Kriging”. [MJM] What penalties does this restriction incur? This
restriction simplifies the situation significantly, most notably by eliminating the mean terms from (1.12),

K(x, z) = Cov(Yx, Yz) = E(YxYz), (1.15)

and from (1.14)

pY X (y) =
1√

2π det(K)
exp

(
−1

2
yTK−1y

)
, (1.16)

This also produces a duality between the reproducing kernel Hilbert space HK(Ω) defined in Section 1.1 and the
Hilbert space HY which is the set of all linear combinations of random variables Yx together with their L2(Ω,A, P)-
limits. The Loève representation theorem says that the inner products in these Hilbert spaces are identical, i.e.,

⟨Yx, Yz⟩HY = E(YxYz) = K(x, z) = ⟨K(·,x),K(·, z)⟩HK ,

where the final identity occurs because of the reproducing property of K. We believe that this implies a connection
between the eigenfunctions φm defined in Section 1.1.1 and elements of the Karhunen-Loève expansion, but I’m not
going to write about that here.

The biggest advantage of assuming zero-mean Gaussian fields comes when making predictions for unobserved
values of Yx0 , x0 ̸∈ X . After a lengthy derivation (which can be found in a talk I gave at one point) involving the
joint distribution of (Y X , Yx0), it can be shown that the conditional density for the random variable Yx0 given a
realization y of the multivariate normal random variable Y X is

pYx0
(y|Y X = y) ∝ exp

(
−1

2
(y − µ̄)C−1(y − µ̄)

)
, (1.17)

where µ̄ = µY (x0) + k(x)
TK−1(y − µ) and C = K(x0,x0)− k(x0)

TK−1k(x0). This implies that Yx0 |Y X = y is a
normal random variable (no surprise there, that the conditional of a normal is normal) with mean µ̄ and variance C;
it is not a covariance here because we consider only one point x0.

5

By enforcing our zero-mean assumption, both µY (x0) = 0 and µ = 0, meaning that

Yx0 |Y X = y ∼ N
(
k(x0)

TK−1y , K(x0,x0)− k(x0)
TK−1k(x0)

)
. (1.18)

Thus, the best linear unbiased predictor for the zero-mean Gaussian field Y at a point x0 ∈ Ω is

E(Yx0 |Y X = y) = k(x0)
TK−1y, (1.19)

which through some miracle of mathematics is identical to (1.2) if you consider the function values in the numerical
analysis setting y to be equal to the Gaussian random field realization y. In another awesome twist, the power
function (1.6) evaluated at x0 perfectly matches the so-called Kriging variance:

Var(Yx0 |Y X = y) = K(x0,x0)− k(x0)
TK−1k(x0) = PK,X (x0)

2.

This suggests that minimizing the power function, a wholly analytic approach to reducing the error in the interpolant,
has the effect of minimizing the variance of our Kriging prediction, which is a wholly statistical approach to reducing
the “error” in the prediction.

1.3 Parameterizing Kernels

So far, we have introduced two ways that we can approach this scattered data interpolation problem, which under
certain circumstances yield the same result. We have assumed that the kernel which defines the interpolating basis
k(x), and defines the covariance of the Gaussian random field Y , is a Gaussian kernel (1.1).

Within that Gaussian kernel K(x, z) = exp(−ε2∥x − z∥2) is a free parameter ε > 0 which we have until now
largely ignored. It can be proved that any value of ε will still produce a positive definite interpolation matrix K, thus
the interpolant (1.2) is guaranteed to exist and the covariance of YX will be a positive definite matrix.

This theoretical result does not suggest, however, that all ε values will produce equally effective interpolants
and predictions, nor does it suggest that the matrices K will be well conditioned. Indeed, the predictive capacity of
s(x) = k(x)TK−1y is greatly dependent on the shape parameter ε, as is indicated in Figure 2.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Interpolant
Data

(a) ε = 10, condition≈1

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Interpolant
Data

(b) ε = 1, condition≈106

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Interpolant
Data

(c) ε = .0003, condition≈1019

Figure 2: Different shape parameters will produce interpolants that look different. When ε is too large, the basis
functions are too localized and predictions suffer. When ε is too small, K is very ill-conditioned, yielding severe
cancelation errors, and possibly preventing s(xi) = yi for some of the given data. The function which created this
data is f(x) = x(1− x).

The severe ill-conditioning which cripples the result in Figure 2c can be overcome with (1.11). But even with
a stable result, as ε → 0 the Gaussian interpolant approaches the polynomial interpolant (or some polynomial
approximation in higher dimensions) meaning that kernels have the potential to exceed polynomial accuracy for
ε > 0. This is, at least in part, a result of the Runge phenomenon: polynomials are global basis functions, so because
Gaussians have the ability to localize they have the ability to minimize the Runge phenomenon. This concept is
demonstrated graphically in Figure 3.

Figure 3b demonstrates the opportunity for both success and failure when choosing ε. There is a minimum error
attainable for ε ≈ .4642, but if ε is chosen slightly smaller or larger the error could be orders of magnitude worse. Of
course, this graph can only be created with the true function that generated the data, and that will be unavailable in
many applications. This motivates the search for parameterization schemes that may allow us to find good ε values
using just the available data.

6

10
−2

10
−1

10
0

10
1

10
−15

10
−10

10
−5

ε

R
M

S
 r

el
at

iv
e

er
ro

r

Stable Basis
Standard Basis
Polynomial Basis

(a) f(x) = x2

10
−2

10
−1

10
0

10
1

10
−8

10
−6

10
−4

10
−2

10
0

ε

R
M

S
 r

el
at

iv
e

er
ro

r

Stable Basis
Standard Basis
Polynomial Basis

(b) f(x) = cos(πx)

Figure 3: In this example, 10 evenly spaced points in (−1, 1) are sampled and Gaussian interpolation is conducted
with a range of ε values. These results are compared to the polynomial interpolant of the same data, and the ε→ 0
limit is confirmed. This limit cannot be attained with the standard basis, but the stable basis succeeds. The error
is averaged over 100 evenly spaced points.

2 Existing Parameterization Methods

As we work towards trying to identify a suitable shape parameter, we recall existing techniques in the literature
which have had variable levels of success. Each of these existing parameterization techniques has some objective
function which needs to be minimized, and that is what we will introduce now. [MJM] Maybe talk briefly about how
a lot of people just kinda guess, or look at small examples to gain intuition, or something? Also, expert knowledge?

2.1 The power function, a.k.a., the Kriging variance

As we saw in (1.5), the error in a scattered data interpolation is bounded by the power function times the Hilbert
space norm of f . Our choice of parameter ε will have an effect on ∥f∥HK , but it is not one that we can immediately
understand. [MJM] Maybe I’ll type more up about this.

We are, however, able to measure how ε affects the power function, and this motivates one strategy that people
have used to optimize their kernels: minimize the power function to minimize the pointwise interpolant error. In
this setting, the objective function is

Cpower(ε; k) = ∥PK,X ∥k, (2.1)

where the k-norm can be chosen in one of several ways (2-norm, ∞-norm, HK norm). If, at the time of interpolation,
you know at which points X̂ you want to evaluate s, you can choose a discrete norm of PK,X (x̂i), 1 ≤ i ≤ N̂ , to
minimize the error at those points. If you do not know those points, you can just approximate the L2(Ω) norm.

Historically, the power function has been unstable during computation because of the presence of the K−1 term,
which is notoriously ill-conditioned. Using the Hilbert-Schmidt SVD Section 1.1.1 relieves this difficulty because
k(x)TK−1 = ψ(x)TΨ−1:

PK,X (x) =
√
K(x,x)−ψ(x)TΨ−1k(x).

See Figure 4 for some examples measuring the 2-norm of the power function compared to the error of the interpolation.
In these graphs, Cpower(ε; 2) seems to decrease until reaching roughly 10−8; this unfortunately seems to be the

result of numerical cancelation which occurs as ψ(x)TΨ−1k(x) → 1 for ε → 0. Fixing this may be possible if we
perform additional matrix algebra on PK,X using the Hilbert-Schmidt SVD:

PK,X (x)2 = K(x,x)− k(x)TK−1k(x)

= K(x,x)−ψ(x)TΛ1Φ
T
1 Φ

−T
1 Λ−1

1 Ψ−1Φ1Λ1ψ(x)

= K(x,x)−ψ(x)TΨ−1Φ1Λ1ψ(x)

7

10
−2

10
−1

10
0

10
1

10
−5

10
0

ε

Power function
Interp error

(a) f(x) = cos(πx), N = 10 uniform points

10
−2

10
−1

10
0

10
1

10
−10

10
−5

10
0

ε

Power function
Interp error

(b) f(x) = J0(4|x|), N = 15 chebyshev points

Figure 4: In this example, N points in (−1, 1) are sampled and Gaussian interpolation is conducted with a range of ε
values. These results are compared to Cpower(ε; 2), which seems to flatten out for small values of ε. This suggests
that minimizing PK,X alone may not be sufficient to obtain an optimal epsilon, though it may help in finding an
appropriate region. The error is averaged over 100 evenly spaced points.

To simplify this, we will need to analyze Ψ−1Φ1Λ1 recalling (1.9):

Ψ−1Φ1Λ1 =

((
Φ1 Φ2

)(IN
Λ2Φ

T
2 Φ

−T
1 Λ−1

1

))−1

Φ1Λ1

=
(
Φ1 + Φ2Λ2Φ

T
2 Φ

−T
1 Λ−1

1

)−1
Φ1Λ1

=
(
Λ−1
1 + Λ−1

1 Φ−1
1 Φ2Λ2Φ

T
2 Φ

−T
1 Λ−1

1

)−1

= Λ
1/2
1

(
IN + Λ

−1/2
1 Φ−1

1 Φ2Λ2Φ
T
2 Φ

−T
1 Λ

−1/2
1

)−1

Λ
1/2
1

= Λ
1/2
1

(
IN + LLT

)−1
Λ
1/2
1 ,

where we have defined L = Λ
1/2
2 Φ2Φ

−1
1 Λ

−1/2
1 . We want to use the von Neumann series to write

(
IN + LLT

)−1
=

∞∑
k=0

(−1)k(LLT)k = IN − LLT + (LLT)2 − . . . , (2.2)

which is only allowed if ∥LLT ∥2 ≤ 1. Studying the structure of L shows

∥LLT ∥2 ≤ ∥L∥22 ≤ ∥Λ1/2
2 ∥22 ∥Λ−1/2

1 ∥22 ∥Φ2Φ
−1
1 ∥22

= (εN+1)2 (ε−N)2 ∥Φ2Φ
−1
1 ∥22 = ε2∥Φ2Φ

−1
1 ∥22

using the submultiplicativity of induced matrix norms. This implies that there is an ε small enough such that the
series (2.2) can be used. Reinspecting the power function for sufficiently small ε with this expansion shows

PK,X (x)2 = K(x,x)−ψ(x)TΛ1/2
1

(
IN − LLT + (LLT)2 − . . .

)
Λ
1/2
1 ψ(x)

= K(x,x)−ψ(x)TΛ1ψ(x) +ψ(x)
TΛ

1/2
1 LLTΛ

1/2
1 ψ(x)− . . .

≈ K(x,x)−ψ(x)TΛ1ψ(x),

where the final approximation becomes more valid as ε→ 0. Because of the swift decay of the eigenvalues it is likely
that the terms in ψ(x)TΛ1ψ(x) will need to be separated out to avoid cancelation. Thus we may prefer to write

PK,X (x)2 ≈ K(x,x)−
N∑

n=1

λnψn(x)
2 = K(x,x)− λ1ψ1(x)

2 − λ2ψ2(x)
2 − . . . , (2.3)

so that the magnitude of the first few terms, which are likely on the same order as K(x,x), do not overwhelm the
later terms.

8

2.1.1 The Golomb-Weinberger Error bound

At the end of the Appendix, we suggest that the standard error bound (1.5) could be made computable if our
predictive accuracy on Ω is good enough:

∥f − s∥HK
≤ δε∥s∥HK

.

This term δε is presumably a small number if we have done a good job of approximating f ; the ε term is left there
just to show that it is not independent of ε as is suggested in Figure 2 for large ε.

Using this assumption, and (3.3), we can write (1.5) as

|f(x)− s(x)| ≤ δε∥s∥HK
PK,X (x), (2.4)

which is referred to as the Golomb-Weinberger bound. We determined ∥s∥HK
=

√
yTK−1y in (3.4), so by assuming

that we have done a decent job approximating f , i.e., ∥f − s∥HK
is small, our new criterion for optimizing ε is

Cgw(ε; k) =
√
yTK−1y ∥PK,X ∥k. (2.5)

We have already discussed in Section 2.1 how computing the power function can be numerically unstable and
requires the Hilbert-Schmidt SVD; we also discussed how PK,X is subject to cancelation, but we’ll forget that for
a moment. The presence of K−1 in the yTK−1y term seems dangerous because of ill-conditioning in K. Indeed,
direct computation of this term is not recommended, and even with the Hilbert-Schmidt SVD the situation is still
troubling. Simple substitution leads to

∥s∥2HK
= yTK−1y = yT (ΨΛ1Φ

T
1)

−1y = yTΦ−T
1 Λ−1

1 Ψ−1y = yT
ΦΛ

−1
1 yΨ, (2.6)

where Φ1yΦ = y and ΨyΨ = y. Those terms are (presumably) safe to compute, or else the stable basis cannot solve
the interpolation problem.

Even so, this term yT
ΦΛ

−1
1 yΨ may not be safe to compute as it is a weighted inner product between yT

Φ and yΨ.
This computation is therefore subject to numerical cancelation if the vectors are on different scales; in experiments
we have even seen this value computed to be a negative number, despite the fact that ∥s∥HK

≥ 0.
Although this direct computation has proven unreliable in practice, further manipulations will allow us to bound

∥s∥HK
, and the bound will become tighter as ε→ 0. The first step is to define Ψb = y - our goal will be to compute

yTK−1y = bTBb

for some matrix B. This vector b = Ψ−1y is safe to compute if ψ is indeed a stable basis, and this symmetric inner
product will not be subject to the same numerical issues as (2.6). To find B we may perform some manipulations
involving the HS-SVD K = ΨΛ1Φ

T
1 ,

yTK−1y = yTΦ−T
1 Λ−1

1 Ψ−1y

= (Ψb)TΦ−T
1 Λ−1

1 Ψ−1Ψb

= bTΨTΦ−T
1 Λ−1

1 b. (2.7)

Thus B = ΨTΦ−T
1 Λ−1

1 , although at first glance this does not seem very helpful.
To simplify ΨTΦ−T

1 = (Φ−1
1 Ψ)T , we will recall the structure of ψ from (1.9):

ψ(x)T = ϕ(x)T
(

IN
Λ2Φ

T
2 Φ

−T
1 Λ−1

1

)
⇒ Ψ =

(
Φ1 Φ2

)(IN
Λ2Φ

T
2 Φ

−T
1 Λ−1

1

)
,

where we have used the fact that Φ =
(
Φ1 Φ2

)
. Substituting this into Φ−1

1 Ψ gives

Φ−1
1 Ψ = Φ−1

1

(
Φ1 Φ2

)(IN
Λ2Φ

T
2 Φ

−T
1 Λ−1

1

)
=

(
IN Φ−1

1 Φ2

)(IN
Λ2Φ

T
2 Φ

−T
1 Λ−1

1

)
= IN + Φ−1

1 Φ2Λ2Φ
T
2 Φ

−T
1 Λ−1

1 .

9

Using this result in (2.7) gives

yTK−1y = bT (Φ−1
1 Ψ)TΛ−1

1 b

= bT
(
IN + Φ−1

1 Φ2Λ2Φ
T
2 Φ

−T
1 Λ−1

1

)T
Λ−1
1 b

= bTΛ−1
1 b+ bTΛ−1

1 Φ−1
1 Φ2Λ2Φ

T
2 Φ

−T
1 Λ−1

1 b (2.8)

= bTΛ−1
1 b+ (Λ

1/2
2 ΦT

2 Φ
−T
1 Λ−1

1 b)T (Λ
1/2
2 ΦT

2 Φ
−T
1 Λ−1

1 b)

≥ bTΛ−1
1 b, (2.9)

where the inequality is true because ∥Λ1/2
2 ΦT

2 Φ
−T
1 Λ−1

1 b∥22 ≥ 0. Here, Λ
1/2
2 is defined as the diagonal matrix with the

positive square roots of Λ2 on its diagonal.
This result implies that if we use the Hilbert-Schmidt SVD we can bound the native space norm of the interpolant

from below by
√
bTΛ−1

1 b. This term is safely computable because it is a symmetric inner product, meaning that

cancelation will not occur:

bTΛ−1
1 b =

N∑
n=1

b2n
λn
.

We can reach this result another way, by instead studying ∥s∥2HK
with the Hilbert-Schmidt SVD (recalling (1.11)

and (1.9))

∥s∥2HK
= ⟨sT , s⟩HK

= ⟨yTΨTψ(·),ψ(·)TΨy⟩HK

= yTΨT

⟨(
IN

Λ2Φ
T
2 Φ

−T
1 Λ−1

1

)T

ϕ(·),ϕ(·)T
(

IN
Λ2Φ

T
2 Φ

−T
1 Λ−1

1

)⟩
HK

Ψy

= bT
(
IN Λ−1

1 Φ−1
1 Φ2Λ2

) ⟨
ϕ(·),ϕ(·)T

⟩
HK

(
IN

Λ2Φ
T
2 Φ

−T
1 Λ−1

1

)
b

= bT
(
IN Λ−1

1 Φ−1
1 Φ2Λ2

)(Λ−1
1

Λ−1
2

)(
IN

Λ2Φ
T
2 Φ

−T
1 Λ−1

1

)
b

= bT
(
Λ−1
1 + Λ−1

1 Φ−1
1 Φ2Λ2Φ

T
2 Φ

−T
1 Λ−1

1

)
b.

The resolution of the inner product is a result of the Hilbert space orthogonality of the eigenfunctions described in
(1.8), i.e.,

⟨
ϕ(·),ϕ(·)T

⟩
HK

= Λ−1.

Remark 1 Much of what is presented in this paper applied to general kernels, but the lower bound on ∥s2∥HK

derived below applies only to Gaussian kernels. There are likely similar bounds on other kernels as well. A thorough
discussion of the Gaussian eigenvalues is available in [3].

The bound (2.9) becomes tighter as ε → 0, because the remainder term in (2.8) is orders of magnitude smaller
than the main term. [GEF] There are pictures to illustrate this in my Sicily talk. To prove this, we need to study

∥Λ1/2
2 ΦT

2 Φ
−T
1 Λ−1

1 b∥22; we assume that ΦT
2 Φ

−T
1 is a well-behaved matrix as ε → 0. This is a reasonable assumption

if the eigenfunctions are properly scaled, a topic which is discussed in [3]. Furthermore, we can note that b is
well-behaved as ε→ 0 because otherwise ψ would not be a stable basis.

We need to consider the magnitude of terms in Λ
1/2
2 ΦT

2 Φ
−T
1 Λ−1

1 as ε → 0, under the assumption that ΦT
2 Φ

−T
1 is

at its limit. Rows of ΦT
2 Φ

−T
1 are scaled by Λ

1/2
2 and columns are scaled by Λ−1

1 . Note that as ε→ 0,(
Λ−1
1

)
ii
≈ ε−2i,

(
Λ
1/2
2

)
ii
≈ εi+N . (2.10)

Recalling a property of matrix norms that I found on Wikipedia (I’m sure it’s also in [5]), we know that ∥Ax∥a ≤
∥A∥b∥x∥a for a, b such that ∥ · ∥b is an induced matrix norm and ∥ · ∥a is a valid vector norm. Using that, (2.10), and

10

the submultiplicativity of induced matrix norms, we know

lim
ε→0

∥∥∥Λ1/2
2 ΦT

2 Φ
−T
1 Λ−1

1 b
∥∥∥
2
≤ lim

ε→0

∥∥∥Λ1/2
2 ΦT

2 Φ
−T
1 Λ−1

1

∥∥∥
∞

∥b∥2

≤ ∥b∥2
∥∥ΦT

2 Φ
−T
1

∥∥
∞ lim

ε→0

∥∥∥Λ1/2
2

∥∥∥
∞

∥∥Λ−1
1

∥∥
∞

≤ ∥b∥2
∥∥ΦT

2 Φ
−T
1

∥∥
∞ ε1+Nε−2N

This lets us say that

lim
ε→0

∥∥∥Λ1/2
2 ΦT

2 Φ
−T
1 Λ−1

1 b
∥∥∥2
2
≤ ε2−2N

∥∥ΦT
2 Φ

−T
1

∥∥2
∞ ∥b∥22.

When we compare that to

bTΛ−1
1 b =

∥∥∥Λ−1/2
1 b

∥∥∥2
2
≤

∥∥∥Λ−1/2
1

∥∥∥2
∞

∥b∥22 =
(
ε−N

)2 ∥b∥22 = ε−2N∥b∥22,

we see that, as ε → 0, the remainder term of (2.8) grows two orders of magnitude more slowly than the bound in
(2.9).

[GEF] So if you combine the two ideas, does Cgw(ε; k) give you a good criterion? I’ve used the Cgw(ε;∞) criterion—
without the HS-SVD—before. See Fig. 20 in the past, present, future paper. For me, it seemed to be right there with
MLE. [MJM] I think we’re still subject to the same cancelation for the power function. The fix I just typed up may correct
that. I’ll need to test it though.

2.2 Cross-Validation

This writeup is stolen liberally from the Hickernell writeup that I mentioned earlier. The idea of cross-validation is
essentially:

• Given the scattered data X and y, partition the design into disjoint, nonempty groups XI and XO so that
XI ∪XO = X . The set XI will be used to create an auxiliary approximation sI and the set XO will be used to
judge the accuracy of sI .

– The sets XI and XO block up the interpolation matrix K, its inverse A, and the vectors y and c as

K =

(
KII KIO

KOI KOO

)
, A =

(
AII AIO

AOI AOO

)
, y =

(
yI

yO

)
, c =

(
cI
cO

)
.

Recall that Kc = y, and thus c = Ay; because K and A are symmetric, we know that KIO = KT
OI and

AIO = AT
OI . Also recall that the parameter ε appears in K.

• The available data at X0 is y0, and the prediction at the points X0 using the data (XI ,yI) is KOIK
−1
II yI which

can be determined by applying the structure of (1.4) at x locations in XO. Therefore, studying∣∣ yO − KOIK
−1
II yI

∣∣
tells us something about how good our approximation is. The matrix KOIK

−1
II can be thought of as an operator

which takes in values on XI and interpolates them to XO [6].

• By considering a set of p partitions O = {X (1)
O , . . . ,X (p)

O } such that

X (i)
O ∩ X (j)

O = ∅, i ̸= j, and

p∪
i=1

X (i)
O = X

with X (i)
I = X \X (i)

O , we could consider instances with certain pieces of data omitted for certain i values. Then
we could consider the residual left-over by our interpolants evaluated at those points:

Ccv(ε;O, k) =
∑

XO∈O

∥∥yO − KOIK
−1
II yI

∥∥
k
, (2.11)

where k is probably 1, 2 or ∞.

11

The criterion to be minimized for a good ε value is (2.11). Of course, the presence of K−1
II suggests ill-conditioning

may be a problem. If we choose to implement the Hilbert-Schmidt SVD here, we should block up the interpolation
matrix

K =

(
KII KIO

KOI KOO

)
=

(
ΨIIΛIΦ

T
I ΨIOΛOΦ

T
O

ΨOIΛIΦ
T
I ΨOOΛOΦ

T
O

)
=

(
ΨII ΨIO

ΨOI ΨOO

)(
ΛIΦ

T
I

ΛOΦ
T
O

)
. (2.12)

Using this block structure, we see that KII = ΨIIΛIΦ
T
I and KOI = ΨOIΛIΦ

T
I , so therefore we can write the criterion

as

Ccv(ε;O, k) =
∑

XO∈O

∥∥yO −ΨOIΨ
−1
II yI

∥∥
k
, (2.13)

which is presumably safer to compute.
The expression in (2.11) can be rewritten in a slightly different way by exploiting the block structure of the

relevant vectors and matrices. Note that c = Ay implies

cO = AOIyI + AOOyO.

We can also invoke the fact that AK = IN (where IN is the N ×N identity) to note that

AOIKII + AOOK
T
IO = 0 ⇒ AOI = −AOOK

T
IOK

−1
II .

Plugging this in above gives

cO = −AOOKOIK
−1
II yI + AOOyO

A−1
OOcO = −KOIK

−1
II yI + yO

which allows us to write our optimization criterion as

Ccv(ε;O, k) =
∑

XO∈O

∥∥A−1
OOcO

∥∥
k
. (2.14)

To involve the Hilbert-Schmidt SVD, we need to study (2.12) and define(
ΨII ΨIO

ΨOI ΨOO

)(
BII BIO

BOI BOO

)
=

(
INI

INO

)
,

where XI and XO have NI and NO points in them respectively. Manipulations similar to those above show that

B−1
OO = ΨOO −ΨOIΨ

−1
II ΨIO,

which we will use shortly. We also need to define(
ΨII ΨIO

ΨOI ΨOO

)(
bI
bO

)
=

(
yI

yO

)
⇒

(
bI
bO

)
=

(
BII BIO

BOI BOO

)(
yI

yO

)
,

(
bI
bO

)
=

(
ΛIΦ

T
I

ΛOΦ
T
O

)(
cI
cO

)
This implies that, in terms of the HS-SVD system, cO = Φ−T

O Λ−1
O bO, and sufficient study of (2.12) knowing that

AK = IN gives us AOO = Φ−T
O Λ−1

O BOO. Combining these in (2.14) gives us

Ccv(ε;O, k) =
∑

XO∈O

∥∥B−1
OObO

∥∥
k
=

∑
XO∈O

∥∥(ΨOO −ΨOIΨ
−1
II ΨIO)

−1bO
∥∥
k
, (2.15)

which is almost certainly more stable to compute.
Often times, cross-validation is conducted in one of two ways:

• Leave-one-out cross-validation - All the data except a single point is used to compute the interpolant, and
the residual is judged at that point. In this setting, O = {x1,x2, . . . ,xN} and the errors at each of those
points are added up to find CV (ε;O, k). (2.14) may be preferable to compute in this case because AOO is just
a number.

12

• Leave-half-out cross-validation - Half of the data is omitted to create an interpolant and the residual is
judged on the other half; then the process is flipped and both results are combined to compute CV (ε;O, k). In
this setting, O = {X (1)

O ,X (2)
O } and

∣∣∣X (1)
O

∣∣∣ = ∣∣∣X (2)
O

∣∣∣, or as close as possible. (2.11) is almost surely the preferred

computation in this case because AOO is roughly size N/2×N/2 and computing its inverse is costly.

An example of cross-validation results is presented in Figure 5, although the results are somewhat inconclusive: the
minimum in Figure 5a seems near the “true” ε, but in Figure 5b the Ccv function for LOOCV seems to drop for
ε→ 0 which does not reflect the error curve.

10
−2

10
−1

10
0

10
1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ε

Leave one out
Leave 1/3 out
Leave 1/2 out
Solution error

(a) f(x) = cos(2πx), N = 18 uniform points

10
−2

10
−1

10
0

10
1

10
−8

10
−6

10
−4

10
−2

10
0

ε

 Leave one out
Leave 1/3 out
Leave 1/2 out
Solution error

(b) f(x) = (1 + x2)−1, N = 24 uniform points

Figure 5: In this example, N points in (−1, 1) are sampled and Gaussian interpolation is conducted with a range of
ε values. These results are compared to Ccv(ε;O, 2), for three O choices: one with 2 equally sized sets, 3 equally
sized set, and N equally sized sets. The error is averaged over 100 evenly spaced points.

One concern, which is discussed in Section 2.3.1, is the process variance. This is the idea that the kernel K in
the Gaussian field could actually be written as K̂ = σK for some positive valued σ called the process variance. This
plays no role here because such a term gets canceled out in the computation of KT

IOK
−1
II yI , in the same way that

it is canceled out in s(x) = k(x)TK−1y. It does potentially play a role in other settings though, most notably the
Kriging variance, and is discussed later.

Although often described in a statistical setting, this cross-validation concept is equally well supported from
the numerical analysis side. No rigorous structure that I know of exists to explain why this is a useful technique
analytically, as opposed to just an idea that makes sense.

2.3 Maximum Likelihood Estimation

This approach leans primarily on the Gaussian processes framework, though we will show later how it can be derived
using the Hilbert space framework. Begin by recalling (1.13), that Y X ∼ N (µ,K), and, as before, restricting the
Gaussian Process Y to have zero mean, i.e., µY ≡ 0. We are going to treat ε as drawn from a random variable E
now, with some unknown distribution; in turn we also will need to define the joint random variable Z = (E ,Y X)
with density pZ . We want to study the conditional density function pE|Y X (ε|Y X = y), that is, how likely it is that
the Gaussian process had covariance K, parameterized by ε, when realizing the data y.

This function is often called the likelihood function, and it allows us to compare the relative likelihood of values
of ε given the existing data. Maximizing this function yields (in some sense) the ε which most likely parameterized
the covariance kernel which generated the data y. The function pE|Y X (ε|Y X = y) is a function of ε for any fixed
value of y.

A technical note: the notation from Section 1.2 and this section will not perfectly align. In that section we
considered ε fixed and the joint distribution (Y X , Yx0), but here we are studying the joint distribution (E ,Y X).
Where we previously had written pY X (y) in (1.16), the appropriate notation in this section is

pY X |E(y|E = ε) =
1√

2π det(K)
exp

(
−1

2
yTK−1y

)
, (2.16)

where although ε does not explicitly appear on the right hand side, it appears within K.

13

We want to study pE|Y X (ε|Y X = y), but we do not know that density. What we do know is the definition of
conditional probability:

P (A|B) =
P (A ∩B)

P (B)
⇔ P (A ∩B) = P (A|B)P (B),

assuming P (B) > 0. Using an analogous version of this for density functions instead of the probability function
allows us to write

pE|Y X (ε|Y X = y) =
pZ(ε,y)

pY X (Y X = y)

=
pY X |E(y|E = ε)pE(ε)

pY X (y)
. (2.17)

We can clean up our likelihood function expression somewhat by ignoring things we have no knowledge of. First
off, we do not know what the marginal distribution of ε is - if we did we would just study that to determine an
optimal ε parameterization. We also do not know what the marginal distribution of Y X is: we do not know how
Y X varies independently of ε. To determine this, we would need to compute

pY X (y) =

∫ ∞

0

pZ(y, ε)dε

which is not going to happen because the joint density pZ is unknown. More importantly, pY X (y) is independent of
ε, and therefore changing ε will have no effect on that value.

By abandoning pE(ε) and pY X (y), we can suggest that

pE|Y X (ε|Y X = y) ∝ pY X |E(y|E = ε), (2.18)

and we know this function (from (2.16)). Thus the concept of maximizing the likelihood requires maximizing
pY X |E(y|E = ε). By itself, this function is subject to overflow and underflow, so it is common to instead work with
its logarithm:

log
(
pY X |E(y|E = ε)

)
= −1

2
log detK− 1

2
yTK−1y − 1

2
log 2π.

Because we have been in the practice of minimizing functions to find optimal ε parameterizations, we will multiply
by −2 and ignore the constant log 2π to create our maximum likelihood criterion

Cmle(ε) = −2 log
(
pY X |E(y|E = ε)

)
− log 2π

= log detK+ yTK−1y (2.19)

2.3.1 Incorporating the process variance

Mentioned briefly in Section 2.2 was the concept of a process variance σ > 0 which defines the maximum covariance
of K; in this setting, our standard kernel K would actually be multiplied by σ to create the kernel K̃ = σK which
defines the Gaussian process Y ∼ GF (µY , K̃).

Thus far we have considered only σ = 1, and in fact this is acceptable for prediction purposes: recall that
s(x) = k(x)TK−1y. Replacing K with K̃ would give

s(x) = k̃(x)T K̃−1y = σk(x)T (σK)−1y = k(x)TK−1y

thus the interpolant would be the same for any σ. The same computation can be applied to Ccv to show that it is
invariant for different σ values. The power function PK̃,X → 0 as σ → 0,

PK̃,X (x) =

√
K̃(x,x)− k̃(x)T K̃−1k̃(x) =

√
σK(x,x)− σk(x)T (σK)−1σk(x) =

√
σPK,X (x),

so when studying the power function it is necessary to fix σ, probably to 1, and vary ε to minimize Cpower.
If the term ∥f∥HK

or ∥s∥HK
is included to compute the Native space norm error or Golomb-Weinberger bound,

respectively, (see the Appendix) then the situation becomes more complicated because σ is involved in the Native
space norm.

14

The situation is also tricky for maximum likelihood estimation, which is why it is under consideration right now.
When we introduce a process variance, we are suggesting that σ is a draw from a random variable Σ with unknown
distribution. We would need to study the joint distribution (Σ, E ,Y X), and our kernel parameterization would
require optimizing for both σ and ε by maximizing pΣ,E|Y X (σ, ε|Y X = y), which we will maximize by maximizing
pY X |Σ,E(y|Σ = σ, E = ε) similarly to (2.18).

We could treat this as a two dimensional optimization problem, but instead we will invoke the technique of profile
likelihood, where σ will be defined as a function of ε, i.e., σ ≡ σ(ε). Our goal now is to choose an optimal process
variance σopt which we will do by maximizing pΣ|E,Y X (σ|E = ε,Y X = y). The term profile likelihood is a bit of

a misnomer, because pΣ,E|Y X (σ(ε), ε|Y X = y) is not derived from a cumulative distribution function and thus it is
not a true density and loses some desirable properties. Even so, this is a common technique.

Using the same proportionality logic as in (2.18) we can write that

pΣ|E,Y X (σ|E = ε,Y X = y) ∝ pE,Y X |Σ(ε,y|Σ = σ)

= pY X |Σ,E(y|Σ = σ, E = ε)pE|Σ(ε|Σ = σ)

∝ pY X |Σ,E(y|Σ = σ, E = ε).

Therefore, our optimal σ can be found by maximizing pY X |Σ,E(y|Σ = σ, E = ε); this function is the same as (2.16),

except with K replaced by K̃. As before, instead of maximizing, we will try to minimize the negative log of this
function:

−2 log
(
pY X |Σ,E(y|Σ = σ, E = ε)

)
+ log 2π = log det K̃+ yT K̃−1y

= log detσK+ yT (σK)−1y

= N log σ + log detK+
1

σ
yTK−1y

Differentiating this with respect to σ, setting it equal to 0, and solving for σ gives the optimal profile variance

σopt =
1

N
yTKy. (2.20)

Using the profile likelihood strategy, we maximize pΣ,E|Y X (σ, ε|Y X = y) by minimizing

−2 log
(
pY X |Σ,E(y|Σ = σopt, E = ε)

)
+ log 2π = N log

(
1

N
yTK−1y

)
+ log detK+

(
1

N
yTK−1y

)−1

yTK−1y

= N log
(
yTK−1y

)
+ log detK−N logN +N

thus defining our profile likelihood ε parameterization criterion as

Cmple(ε) = N log
(
yTK−1y

)
+ log detK (2.21)

after omitting the constant −N logN +N .

2.3.2 A deterministic derivation of MLE

The title of this section is a bit misleading, because of course likelihoods cannot be discussed outside of a probabilistic
setting. The criterion Cmple is equivalent to a criterion which can be derived deterministically, which we will show
now. This too was swiped from the Hickernell writeup.

As before, assume that the function which produced the data y is f ∈ HK . Let us expand the notation for
our interpolant s to include the data z which generated the interpolant: s(·; z) = k(·)TK−1z. Also, recall the
Hilbert-space norm of an interpolant (derived in (3.4) in the Appendix) is

∥s(·; z)∥HK
=

√
zTK−1z. (2.22)

15

Let V (ε) denote the volume of the ellipsoid in RN which contains all z such that ∥s(·; z)∥HK
≤ ∥s(·;y)∥HK

:

V (ε) = volume of ellipsoid
{
z ∈ RN : ∥s(·;z)∥2HK

≤ ∥s(·;y)∥2HK

}
= volume of ellipsoid

{
z ∈ RN : zTK−1z ≤ yTK−1y

}
= ϑN

(yTK−1y)N

detK−1

= ϑN (yTK−1y)N detK = ϑN exp(Cmple(ε)),

where ϑN is the volume of the RN unit sphere. Thus, choosing ε to minimize the volume of the ellipsoid containing
function data which would produce “smaller interpolants” (in the HK norm) than the observed data y produces is
equivalent to maximizing the profile likelihood that ε parameterized the Gaussian field from which y was realized.

This concept of ellipsoid volume is basically employing Occam’s Razor: the interpolant that best fits the data
should be the simplest, which in this case is measured using the HK norm. The ellipsoid described in V (ε) contains
data that would produce a simpler interpolant. By choosing ε to minimize V (ε) we are minimizing the region from
which simpler interpolants could be produced, thus making it less likely that our interpolant is not the simplest.

2.3.3 Impact of the Hilbert-Schmidt SVD

Two pieces appear in (2.21) which may be subject to ill-conditioning, log
(
yTK−1y

)
and log detK. We have already

presented (2.8) which will allow the former term to be computed stably, and (2.9) which will bound that term as
ε→ 0 and help us avoid potential overflow/underflow prior to applying the logarithm. The term log detK is actually
more safe to compute when the analytic form of the eigenvalues is known.

Using the Hilbert-Schmidt SVD,

log detK = log detΨΛ1Φ
T
1 = log

(
detΨ detΛ1 detΦ

T
1

)
= log detΨ+ log detΛ1 + log detΦT

1 .

Presumably, we have already computed a factorization of ΦT
1 when Ψ was computed (recall (1.9)) so computing

log detΦT
1 should come at no cost and with no stability issues. Furthermore, assuming we at some point computed

Ψ−1y to evaluate our interpolant, we should have a factorization of Ψ meaning that log detΨ can be computed at
no cost and with no stability issues. The final term, log detΛ1 is straightforward because it is diagonal:

log detΛ1 = log

N∏
n=1

λn =

N∑
n=1

log λn,

and by distributing the logarithm we are able to avoid the underflow issues that would otherwise arise.
[MJM] Add pictures

3 Goals for a Parameterization Judgment Tool

For applications to buy into kernel methods, the presence of a free parameter such as ε (or perhaps a β smoothness
parameter) must be seen as a benefit and not a liability. To do this, we need to have successful parameterization
methods so that ε can be chosen to produce the most accurate results. The techniques described above show that
existing parameterization methods may work or may not work depending on the situation. New schemes can be
developed, but we believe that a tool is needed to judge the viability of existing and future schemes within a rigorous
context.

Our goal right now is to develop a metric by which the quality of a parameterization scheme can be measured
with respect to other schemes, or a single scheme’s success can be compared across scattered data problems. This
could be thought of analogously to how we measure the convergence rate of numerical algorithms such as Newton’s
method: when solving f(α) = 0, we know

|ϵn+1| =
|f ′′(ξn)|
2 |f ′(xn)|

ϵn
2 , ϵn = α− xn, ξn between xn and α.

This suggests that Newton’s method converges quadratically, which is a property that can be compared to other
root-finding schemes. On the other hand, this quadratic convergence is only valid when f ′(x) ̸= 0 near x = α and
f ′′(x) <∞ near x = α, which is a comparison of this method across the set of problems to which it could be applied.

16

What I think is the likeliest structure for a parameterization judgment tool will be: how near is the guess to
the “true” value as the amount of available data increases. Now, what exactly the “true” value means is up for
interpretation ...

• You could argue that the true ε for any given set of data would be the value that minimizes (some norm of)
the error. I think that is an unstable definition because it may be subject to small changes in the data, but it
is probably the definition most sought by applications people.

• The “true” ε could be the ε value that defines the Hilbert-space HK in which f lies.

• In the same way as the previous bullet, the “true” ε could be the ε value defining the covariance kernel of the
Gaussian process that generated the available data.

The last two points are similar approaches to defining the “true” ε, only the 2nd bullet considers it from the numerical
analysis side, and the 3rd considers it from the statistics side.

Defining the fill-distance to be
hX = sup

x∈Ω
min
xj∈X

∥x− xj∥2

gives us a mechanism for defining the density of the design of points used in the approximation problem. Basically,
the fill distance is the radius of the largest ball that can be squeezed in between points in the design X . This is a
useful tool for studying convergence behavior of interpolation schemes; for instance, we know that a kernel K with
2β smooth derivatives has an interpolant s to data generated by f ∈ HK with accuracy

|f(x)− s(x)| ≤ ChβX
√
CK(x)∥f∥HK

, (3.1)

where CK is independent of f and hX is sufficiently small. An example of an optimal ε graph as N increases (and
thus hX decreases) is provided in Figure 6.

20

40

60

80

10010
0

10
1

−20

−15

−10

−5

0

N

ε

lo
g 10

(e
rr

or
)

Figure 6: This example involves f(x) = (1 + 4x2)−1 and shows that as N → ∞ there is a rough “convergence” of ε
to a consistent value. This example doesn’t perfectly reflect the idea of an ε value of an underlying RKHS because
f does not belong to a Gaussian RKHS. Even so, the idea still applies here, until machine precision takes over.

It is my hope that a similarly structured bound can exist in a probabilistic sense for the accuracy of a parame-
terization scheme. Essentially, the situation would play out as

1. Data is generated by a function f ∈ HK or a Gaussian process Y with covariance kernel K.

(a) The kernel K that appears in both settings is the same. It has some parameter ε that defines it, but ε is
unknown to us.

17

(b) The data is {(x1, y1), . . . , (xN , yN)}. This defines the design X = {x1, . . . ,xN} and the vector y.

i. Knowing X defines the fill-distance hX .

2. A parameterization scheme is chosen to guess a ε̂ value to be used while constructing the approximation. For
example, this could be computed as

ε̂ = argmin
ε

Cpower(ε; 2).

(a) This scheme may involve y (e.g., cross-validation) or only X (e.g., power function).

(b) The accuracy of this scheme is hopefully something of the form

|ε− ε̂| ≤ hγX [C1(X)C2(y)∥f∥HK
] ,

for some γ > 0 and C1, C2. Really, I have no idea if this is what it will look like, it’s just a thought for an
ideal situation in the deterministic setting.

(c) What is much more likely is that the bound will be of the form

P (|ε− ε̂| < α) ≥ 1− ν(X ,y, α), lim
hX→0

ν(X ,y, α) = 0,

because if the data is generated by a Gaussian process, then there’s always a chance that it will be a really
crummy, uninformative realization.

This last point, Dr. Cobb, is where I think you will be of great help. If we can prove something of this form, then we
would be able to judge (empirically at the least) the quality of parameterization schemes which would help inform
applications scientists.

With a tool like this, we would be able to make comments on

• Consistency - Will the scheme recover the “true” ε for an infinitely dense design? This would only be true if
limhX→0 ν(X ,y) = 0.

• Convergence rate - How quickly is the parameterization scheme approaching the “true” ε, and thus how few
points are needed before I feel comfortable that I am doing a decent job? This would depend on the rate at
which limhX→0 ν(X ,y) = 0, especially in comparison to other schemes.

• Stability - Do small changes in X and y affect the consistency or convergence of the scheme? I’m not as
concerned about this, but it is something that should eventually be studied.

• Bounding ε - Most applications don’t demand an optimal ε because of noise in the data. Can this convergence
study be used to create a region in which the “true” ε lies?

• Computational cost - If two schemes have similar convergence properties, is there any reason to not use the
cheaper one?

• Log scale - The plots used above show ε on a log-scale, and often this is how we consider different ε values.
Is it useful to instead study accuracy of the form

| log ε− log ε̂|, or log |ε− ε̂|?

So, do you know of anything that would help us think about this problem?

References

[1] R. Cavoretto, G. Fasshauer, and M. McCourt. Compact Matérn kernels and piecewise polynomial splines viewed
from a Hilbert-Schmidt perspective, 2013. submitted.

[2] G. E. Fasshauer. Meshfree Approximation Methods with Matlab. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 2007.

18

[3] G. E. Fasshauer and M. McCourt. Stable evaluation of Gaussian RBF interpolants. SIAM J. Sci. Comput.,
34(2):A737—A762, 2012.

[4] M. Golomb and H. F. Weinberger. Optimal approximation and error bounds. In R. E. Langer, editor, On
Numerical Approximation, pages 117–190. University of Wisconsin Press, 1959.

[5] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences.
Johns Hopkins University Press, 2013.

[6] M. McCourt. Using Gaussian eigenfunctions to solve boundary value problems. Adv. Appl. Math. Mech., 5(4):569–
594, 2013.

[7] M. L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer, 1999.

[8] H. Wendland. Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathe-
matics. Cambridge University Press, 2005.

Appendix: Deriving the Native Space Error Bound

For this derivation, we need to recall the reproducing property

⟨f,K(·,x)⟩HK
= f(x), f ∈ HK ,

where HK is the reproducing kernel Hilbert space, or native space, generated by K. It is important to also know
that K(·, x) ∈ HK for x ∈ Ω, which implies that

⟨K(·,x),K(·, z)⟩HK
= K(x,z), x,z ∈ Ω.

Note that because s(x) is a number,
s(x) = s(x)T = yTK−1k(x).

The vector y is full of function values (yi = f(xi)) so we can write

yT =
(
f(x1) · · · f(xN)

)
=

(
⟨f,K(·,x1)⟩HK · · · ⟨f,K(·,xN)⟩HK

)
=

⟨
f,
(
K(·,x1) · · · K(·,xN)

)⟩
HK

= ⟨f,k(·)T ⟩HK .

That in turn allows us to write

s(x) = ⟨f,k(·)T ⟩HKK−1k(x) =
⟨
f,k(·)TK−1k(x)

⟩
HK

.

because K−1k(x) is not a function and is unaffected by the inner product. Using this in the error expression gives

|f(x)− s(x)| = |f(x)− yTK−1k(x)|

=
∣∣∣⟨f,K(·,x)⟩HK

−
⟨
f,k(·)TK−1k(x)

⟩
HK

∣∣∣
=

∣∣∣⟨f,K(·,x)− k(·)TK−1k(x)
⟩
HK

∣∣∣
≤ ∥f∥HK

∥∥∥K(·,x)− kT (·)K−1k(x)
∥∥∥
HK

= ∥f∥HK
PK,X (x),

using the Cauchy-Schwarz inequality, and the power function

PK,X (x) =

√
K(x,x)− kT (x)K−1k(x). (1.6)

This expression for the power function is obtained by again using the reproducing property on the norm present in
the inequality.

19

The standard error bound derived above

|f(x)− s(x)| ≤ ∥f∥HK
PK,X (x) (1.5)

can be improved (see [4]) to

|f(x)− s(x)| ≤ ∥f − s∥HKPK,X (x). (3.2)

To see this, first we must prove that f − s is orthogonal to s in the Hilbert-space inner product:

⟨f − s, s⟩HK
=

⟨
f − s,k(·)TK−1y

⟩
HK

=
⟨
f − s,k(·)T

⟩
HK

K−1y

=
(
⟨f − s,K(·,x1)⟩HK

· · · ⟨f − s,K(·,xN)⟩HK

)
K−1y

=
(
f(x1)− s(x1)) · · · f(xN)− s(xN))

)
K−1y =

(
0 · · · 0

)
K−1y = 0

because we know that f(xi) = s(xi), 1 ≤ i ≤ N , if s interpolates f at those points. Using this, we can prove that
∥f − s∥HK < ∥f∥HK :

∥f∥2HK
= ∥f − s+ s∥2HK

= ∥f − s∥2HK
+ 2⟨f − s, s⟩HK

+ ∥s∥2HK
= ∥f − s∥2HK

+ ∥s∥2HK
> ∥f − s∥2HK

, (3.3)

which implies that (3.2) is a better bound. Even so, this tighter error bound does not seem to play a significant role
in the kernel literature.

Since ∥f∥H(K,Ω) usually is not computable (remember, we do not even know f , but want to reconstruct it from
the data) the standard error bound is not very useful for practical situations. On the other hand, if we assume that
our approximation s is good, i.e.,

∥f − s∥HK ≤ δε∥s∥HK

for some not too large constant δε, then the Golomb-Weinberger improved error bound yields a mostly computable
error bound

|f(x)− s(x)| ≤ δε∥s∥HK
PK,X (x).

This is indeed computable since ∥s∥HK
=

√
yTK−1y:

∥s∥2HK
= ⟨s, s⟩HK

= ⟨yTK−1k(·),k(·)TK−1y⟩HK

= yTK−1⟨k(·),k(·)T ⟩HK
K−1y = yTK−1KK−1y = yTK−1y. (3.4)

Also, recall that this term yTK−1y appears in (1.17) for the zero-mean Gaussian field.

20

