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Abstract

The efficacy of approximation by radial basis functions is often determined by a scale parameter σ.
Determining the appropriate scale paramteter is a nontrivial problem not only because of the nonlinearity
of the kernel functions, but also because defining the quality of a σ is not straightforward. Many of
the techniques for defining a good σ come from statistics, specifically frequentist statistics. While cross-
validation, maximum likelihood estimation and minimizing the power function are commonly used,
Bayesian inference is rarely utilized. This paper discusses a Bayesian analysis of the σ optimization and
derives a Markov Chain Monte Carlo technique for determining a good shape parameter. Along the
way we will cover some numerical issues which arise and compare the requirements of MCMC to other
techniques.

1 The Gaussian Process Model for Radial Basis Interpolation

Much of the material from in the Fasshauer book [4] discusses meshfree approximation from a numerical
analysis point of view - which is logical because he is a numerical analyst. In [14], the use of positive
definite functions for predicting the output of Gaussian processes is discussed. This analyzes the same
problem but puts different assumptions to use: rather than assuming that the underlying function we
want to approximate has some level of smoothness (for which RBF are appropriate) we assume that the
data we have is a realization of a Gaussian process and that the correlation between design points is an
RBF. The following discussion originated in [11] and [10] with adaptations for more general RBF.

1.1 Defining the problem

Suppose we want to fit the model

Y (x) =
Nf∑

j=1

βjfj(x) + Z(x)

to design points (xi, yi), 1 ≤ i ≤ n with the goal to be able to make accurate predictions for future
(x0, y0). It is assumed that we are not able to choose the (xi, yi); being able to do so will not affect
the formulation of the problem, although it may affect the quality of prediction. The fj terms are
deterministic functions - eg. they may be polynomials if our model expects polynomial reproduction.
Z(x) is a Gaussian Process with zero mean and covariance

Cov(Z(u), Z(v)) = ε2Φ(u, v) (1.1)

where Φ(u, v) = φ(σ‖u − v‖) is the radial basis function (or kernel) we have chosen, with σ the shape
parameter. ε2 is the process variance.

For simplicity, we will ignore the regression terms by setting βj ≡ 0 – this means we presume the data
(xi, yi) is a realization of Z. These terms can be handled separately in general because Z is assumed to
be zero mean and thus E[Y ] =

∑Nf

j=1 βjfj(x). A more general statistical formulation and discussion is
found in [15].
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Once we assume βj ≡ 0, for any given shape parameter σ, the best linear unbiased predictor for a
new x0 is

ŷ0(σ) = Φ(x0)T Φ−1y (1.2)

where Φ is the covariance matrix, y is the vector of design values, Φ(x0) is the vector of correlations
between x0 and the design points. This however assumes that we have chosen a suitable σ.

1.2 Numerical demonstration of σ dependence

The choice of σ is very important in making accurate predictions. As an example, consider the input
data generated by evaluating (1 + x2)−1 at 6 evenly space points between 0 and 1.

x y

0 1.0000
0.2 0.9806
0.4 0.9285
0.6 0.8575
0.8 0.7809
1.0 0.7071

When we compare the mean square errors of the unique polynomial interpolant and the Gaussian
RBF interpolant for various values of σ the result is Figure 1. It is apparent in that graph that for some
values of σ, the RBF interpolant outperforms the simple polynomial interpolation. This is a motivation
for us to find the best σ possible.
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Figure 1: For some values of σ the RBF interpolant is better than a polynomial.

Of course, finding the best σ is not a straightforward problem; even defining what best means is a
subjective decision. This can be done in numerous ways, but the goal of this paper is to analyze this
predicament in a Bayesian framework.

1.3 Finding the posterior distribution

Standard techniques for determining an appropriate shape parameter involve optimizing some function -
in [4] potential objective functions include the kriging variance, the leave-one-out cross validation error,
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and the likelihood function. Here we want to consider the posterior distribution p(σ, ε2|y) to which we
can do some standard manipulations,

p(σ, ε2|y)p(y) = p(y|σ, ε2)p(σ, ε2)

p(σ, ε2|y) ∝ p(y|σ, ε2)p(σ, ε2)

p(σ, ε2|y) ∝ L(σ, ε2)p(σ, ε2).

We define L(σ, ε2) as the likelihood of the parameters given the data, and since we are assuming that
the design points are not in our control, L is only a function of the parameters. Notice the presence
of proportional to statements rather than equalities: because we are only interested in the shape of the
posterior distribution we needn’t carry around scaling or shifting terms.

For this paper we are going to take advantage of our assumption that the data is generated by a
Gaussian Process. From this we know the likelihood of the parameters given the data is

L(σ, ε2) ∝ exp
(− 1

2ε2 yT Φ−1y
)

(ε2)n/2
√

det(Φ)
.

See [10]. We may also make the assumption that ε2 and σ are independent, which means that

p(ε2, σ) = p(ε2)p(σ).

If we make no prior assumptions about ε2, that would yield the improper distribution

p(ε2) =
{

1, ε2 ≥ 0
0, else

which can be put in the posterior distribution

p(σ, ε2|y) ∝ exp
(− 1

2ε2 yT Φ−1y
)

(ε2)n/2
√

det(Φ)
p(σ), ε2 ≥ 0.

Because of the special structure of this distribution, ε2 can be analytically integrated out to yield

P (σ) =
ˆ ∞

0

p(σ, ε2|y)p(σ)dε2,

= (yT Φ−1y)−n/2 det(Φ)−1/2p(σ).

which is the distribution for the shape parameter given the assumptions we have made. Note that P
can be interpreted as p(σ|y), the profile posterior over all ε2.

For more information about radial basis functions and Gaussian Processes please reference [4], [16]
or [14]. We now need to choose a prior distribution for σ.

1.4 Prior knowledge

There is still a term p(σ) in P̃ which in Bayesian inference is referred to as the prior distribution [5].
This can be used to incorporate any assumptions we make about σ based on physical characteristics of
the underlying problem. For our purposes here, we are going to consider the use of 3 categories of priors
and then choose an appropriate distribution. Possible options include

• Uninformative prior - p(σ) = 1

• Parametric prior - p(σ) = Γ(σ; α, β)

• Black Box prior - p(σ) = Ψ(σ)

If we have no knowledge of which shape parameter values are more appropriate, then the uninfor-
mative prior is the logical choice. As always, we need to be worried about the use of an improper
prior distribution possibly yielding an improper posterior distribution (refer to [2]); here the form of
the likelihood guarantees a proper posterior. Even so, to assume that we know nothing about σ is to
sell ourselves short: in [4] there are numerous examples with varying test functions, design points and
kernels and the optimal shape parameter is rarely outside of (0, 40).
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Figure 2: A sample prior distribution with mean 3.75 and mode 1.25

The question then becomes: how do we incorporate the belief that the shape parameters will generally
be in the range (0, 40)? One choice is to use a Gamma distribution, which allows for values outside that
domain but has most of its mass centered around more likely values. See Figure 2 for an example. The
distribution can be adjusted if we feel that the design points are on a smaller or larger scale such that
different parameters would be appropriate.

The third option listed earlier is the black box prior which loosely speaking involves using a com-
plicated function to compute a p(σ) value based on information which cannot be described using a
parametric distribution. One example of this might be to evaluate the power function (kriging variance)
at various points in the domain and then use a weighted average as the p(σ) value. The output of the
function need not yield a proper prior, only values whose ratio indicates which choice of σ is preferred.

Because there are many possible choices for black box prior (and they likely require extensive com-
putation) we will focus our work on using

p(σ) = Γ(σ; α, β) =
1

βαΓ(α)
σα−1e−

σ
β

where α = 1.5 and β = 2.5 as depicted in Figure 2.

2 Determining an Appropriate Shape Parameter

We are now able to evaluate (up to a constant) the posterior probability of σ with the function

P (σ) = (yT Φ−1y)−n/2 det(Φ)−1/2Γ(σ; α, β),

where, of course, Φ is the interpolation matrix and is dependent on σ. The process of handling P is
threatened by over/underflow, so instead we will evaluate its logarithm which is

P̃ (σ) = − log(yT Φ−1y)− 1
n

log det(Φ) +
2
n

log p(σ). (2.1)

2.1 Using MCMC to simulate p(σ|y)

Our solution is to use Metropolis-Hastings (See [6],[8]) to generate a sequence of random variables {σi}
which follow the distribution p(σ|y). The proposal distribution will be a normal distribution with mean
at the current σi. The choice of variance γ2 is vital because if our variance is too great then the random
walk will take too few steps and if it is too small then the steps will be too short to fully explore the
domain. This dilemma means that γ2 will need to be problem dependent.

4



Because random walk Metropolis-Hastings has a symmetric proposition, the acceptance ratio for a
step from σi to σ∗ reduces to

α =
P (σ∗)N(σi; σ∗, γ2)
P (σi)N(σ∗; σi, γ2)

=
P (σ∗)
P (σi)

This means that at each step of the Markov Chain we will need to evaluate P̃ once and draw one Normal
random variable. Drawing a Normal random variable is straightforward, however evaluating P̃ may be
problematic depending on the condition of Φ.

2.2 Using Riley’s Algorithm to invert Φ

More than 50 years ago, a regularization technique for solving ill-conditioned symmetric positive definite
linear systems was developed in [13]. It resurfaced in [12] and Fasshauer recently gave a talk at a
colloquium in Syracuse on its efficiency when compared to the SVD. While it does not have an official
name, we will call this Riley’s Algorithm.

Assuming the goal is to solve the system Ax = b where A is SPD and ill-conditioned, Riley’s algorithm
solves a regularized system

C = A + µI µ > 0 (2.2)

which can be factored safely with the Cholesky decomposition. If all we concerned ourselves with was
solving Cy = b this would be ridge regression or Tikhonov regularization. But we can take another step
by noting the identity

A−1 =
1
µ

∞∑

k=1

(µC−1)k,

which gives us a simple iteration method for approximating the solution to Ax = b

xi+1 = y + µC−1xi (2.3)

where y = C−1b. This technique allows us to find x by only performing a stable Cholesky decomposition
on C.

Choosing the regularization parameter µ to maximize stability but minimize the summation length
is not a straightforward procedure, but we won’t concern ourselves with it here. What we do need to
be concerned with is that evaluating P̃ requires both Φ−1y and det(Φ). Unfortunately, using Riley’s
algorithm for the linear solve does not provide us with a determinant revealing factorization as we would
have with a direct solver. In the next section we will analyze a Monte Carlo technique for approximating
the log-determinant of Φ.

2.3 Using Orthogonal Draws to approximate the log-determinant

For a matrix whose eigenvalues are within (−1, 1), [1] describes an algorithm which will approximate its
log-determinant. Unfortunately, no matrices which are generated by radial basis interpolation satisfy
that requirement. It is often the case though that many of the eigenvalues of Φ are satisfactory with
only a few delinquent. Matrices of this form can be analyzed using the technique of orthogonal draws
described in [9] where the problematic eigenspace is found and then the random vectors are projected
away from it.

See Appendix A for a Matlab implementation of orthogonal draws.

3 A Numerical Example

Now that we have set the table, let’s look at a specific 1D example of shape parameter selection by
MCMC.
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Suppose our design points/values are generated by the test function

f(x) = 1 + x

evaluated at 30 evenly spaced points between [0, 1]. If we choose to use truncated power functions as
our RBF

φ(r) = (1− εr)+,

the spectrum of the resulting matrix is likely to have only a few eigenvalues greater than 1. Note that
Φ is positive definite for x in one dimension [4], and sample spectra for σ = 1 and σ = .01 are shown in
Figure 3. The condition numbers of those matrices are roughly 10−3 and 10−5 respectively.

−2 −1 0 1 2
0

2

4

6

8

10

12

log
10

(eigs)

fr
eq

ue
nc

y

Spectrum for σ=1

−4 −3 −2 −1 0 1 2
0

2

4

6

8

10

12

14

log
10

(eigs)

fr
eq

ue
nc

y

Spectrum for σ=.01

Figure 3: Only a few eigenvalues of Φ need to be handled with orthogonal draws.

Using the techniques described earlier, we can evaluate P̃ for various σ (even though Φ may not
be terribly ill-conditioned) and conduct an MCMC simulation to find p(σ|y). 1000 MCMC steps were
conducted with 100 burn-in and the γ2 variance in the random walk is chosen arbitrarily to be .1. The
resulting distribution can be found in Figure 4.
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Figure 4: 900 random variable drawn from p(σ|y) by the MCMC random walk.
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Using this distribution, we can make predictions of new y0 given an x0 6∈ (xi). Using the standard
Bayesian practice for making predictions and (1.2), our prediction of y0 is

ŷ0 =
1
N

N∑

i=1

ŷ0(σi),

where ŷ0(σi) is the best linear unbiased predictor for the ith random variable drawn from p(σ|y). The
mean square error of our sample problem for ŷ0 evaluated at 100 evenly spaced points is 6.6947× 10−15.

There is one obvious difficulty with this technique of predicting new (x0, y0) values: each σ requires
inverting the associated Φ. For the sample problem that means inverting 900 more (potentially ill-
conditioned) matrices to accompany the 1000 inversions which took place in assembling p(σ|y).

Rather than actually finding the best linear unbiased predictor, it is simpler to just approximate the
mean of p(σ|y) and use that value to make predictions. This is also closer to more standard techniques
such as LOOCV and maximum likelihood estimation which produce a unique σ. When we compute the
sample mean from our random walk, σ̄ = .0267 and the MS error of ŷ0(σ̄) for 100 points is 1.2789×10−14.
While this is not quite as good as the true estimator, the large reduction in work seems more valuable.

4 Final Thoughts

This project is more of a proof of concept than an actual usable result. While the technique described
here for radial basis interpolation is viable, there is as of yet no reason to prefer this method of shape
parameter estimation to any other. More work will need to be done to determine when using stochastic
simulation is preferable to deterministic techniques.

In looking at the radial basis interpolation problem from a stochastic standpoint, there is an added
layer of flexibility now. Rather than simply trying to estimate a good shape parameter, we could also
try to find optimal values for the design points or radial basis centers. Even the choice of RBF could be
made to be a distribution allowing the model to do even more than in the deterministic case.

The difficulty with this is twofold. First, adding more parameters to the model may result in
overfitting; and even if it does not, good priors need to be chosen or the resulting posterior may be
troubled. Second, already in this sample problem we discussed, conducting the prediction as it should
naturally happen would double the amount of work required to get an answer. Additional complexity in
the model would only increase the work further and at some point it would no longer be advantageous
to look for more changes.

Unfortunately, each of these topics needs to be considered individually for its merit. It seems logical
that stochastic simulation will eventually become an important part of working with radial basis func-
tions, but first we need to work around the numerical difficulties. Already, [10] discusses a technique
for making i.i.d. draws from an approximation to p(σ|y) which should make the variance in predictions
decrease more rapidly. In the past, we have worked on MCMC methods for inferring about good RBF
centers and using MCMC to solve ill-conditioned RBF systems - the results were mixed, but promising.
Hopefully the statisticians and numerical analysts can continue to work together to solve some of these
problems.
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Appendix A

This Matlab function combines all the adaptations of the original function so that we can approximate
the determinant of A to a certain tolerance. Note that we use eigs to find the disruptive subspace
because A has the potential to be sparse for compactly supported RBF. If A is a dense matrix, it will
probably be faster to use subspace iteration, but because eigs allows us to use a function to represent
A ∗ x it will work for both situations. Note also that we do the orthogonal projection separately rather
than forming the PDP matrix.

function mclogdet = DetAppxVecRBF(A, p , t o l )
n = length (A) ;
v = zeros (1 , p ) ;
x = randn(n , p ) ;
xTx = sum( x .∗ x ) ;
c = x ;
[V,E] = FindOuterSpace (A) ;
lam = E(end ) ;
D = ( speye (n)−A)/ lam ;
oldv = ones (1 , p ) ;
for j = 1 :m

c = ProjectPAP (D,V, c ) ;
v = v−n/ j ∗sum( x .∗ c ) . / xTx ;
i f abs (mean( v)−mean( oldv ) )/mean( oldv)< t o l

break
end
oldv = v ;

end
mclogdet = mean( v)+n∗ log ( lam)+sum( log (E ) ) ;
end

function [V, ou t e r e i g s ] = FindOuterSpace (A)
n = length (A) ;
k = f loor ( sqrt (n ) ) ;
lam = 2 ;
V = [ ] ;
o u t e r e i g s = [ ] ;
opts . issym = 1 ;
opts . disp = 0 ;
while lam>1

[U,T] = e i g s (@(x ) ProjectPAP (A,V, x ) , n , k , ’ l a ’ , opts ) ;
lam = T(k , k ) ;
V = [V,U ] ;
o u t e r e i g s = [ ou t e r e i g s ; diag (T ) ] ;

end
end

function y = ProjectPAP (A,V, x )
% This mu l t i p l i e s ( I−VV’ )A( I−VV’ ) x
i f V==[]

y = A∗x ;
else

y = A∗(x−V∗(V’∗ x ) ) ;
y = y−V∗(V’∗ y ) ;

end
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