
Intro to Regexps
RegExp Specifics

Lecture 7: Regular Expressions

CS2042 - UNIX Tools

October 15, 2008

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Meet Grep
Meet RegExps

Lecture Outline

1 Intro to Regexps
Meet Grep
Meet RegExps

2 RegExp Specifics
Basic RegExp Syntax
RegExp Repetition
Special Characters

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Meet Grep
Meet RegExps

Grep

Let’s say we have a large record of user logons. How could we find
the history of a single user?

Searching Text

grep <string> [file]

Searches [file] for all lines containing <string>

grep -v <string> [file]

Searches [file] for all lines NOT containing <string>

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Meet Grep
Meet RegExps

More Grep

Using grep on a file:

Example:

grep ”logging” /var/log/up2date

Shows server’s logins to up2date server

Using grep with piped input:

Example:

history | grep grep

When have I used grep recently?

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Meet Grep
Meet RegExps

Lecture Outline

1 Intro to Regexps
Meet Grep
Meet RegExps

2 RegExp Specifics
Basic RegExp Syntax
RegExp Repetition
Special Characters

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Meet Grep
Meet RegExps

Intro to RegExps

Occasionally we need to search for less specific strings. For
example, your address book catches fire - why not search your
saved e-mail for anything formatted like an address? We can do
this (fairly) easily using RegExps!

What is a RegExp?

Stands for ”Regular Expression”

Similar to wildcard strings, but more powerful

Also uses different syntax (sorry!)

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Meet Grep
Meet RegExps

Scope

RegExps are used all over the place. We’ve already seen grep,
which takes RegExp search strings. Later we’ll see some other fun
commands which use them.

search documents in emacs/vi

write scripts in Perl/Python/Ruby/...

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

Lecture Outline

1 Intro to Regexps
Meet Grep
Meet RegExps

2 RegExp Specifics
Basic RegExp Syntax
RegExp Repetition
Special Characters

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

Some Wildcard Analogues

Some of the RegExp patterns perform the same tasks as our earlier
wildcards.

Single Characters

Wild card: ? RegExp: .

Matches any single character.

Wild card: [a-z] RegExp: [a-z]

Matches one of the indicated characters

Don’t separate multiple characters with commas in RegExp
form (e.x. [a,b,q-v] becomes [abq-v])

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

A Note on Ranges

Like shell wildcards, RegExps are case-sensitive. What if you want
to match any letter, regardless of case?

What will [a-Z] match?

Character Sorting

Different types of programs sort characters differently. In the C
language, characters A-Z are assigned numbers from 65 to 90,
while a-z are 97-122. Thus, the range [a-Z] would equate to
[122-65]. Though this is bad enough, there are non-alphabet
characters within that range. To specify the range of all letters
safely, use [a-zA-Z].

Note that not everything treats sorting like C. For example, a dictionary

program might sort its characters aAbBcC.... To be on the safe side though,

always use [a-zA-Z]

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

New Stuff

Positional Operators

^ and $ allow us to match strings occuring at the beginning and
end of a line, respectively. The positions of these two characters
(relative to the search string) matter.

^ comes before its string

$ comes after its string

Example:

grep o$

Matches lines ending with ”o”

grep ^[A-Z]

Matches lines beginning with a capital letter

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

Your Shell’s Special Treatment

Note:

Since you usually type regular expressions within shell commands,
it is good practice to enclose the regular expression in single quotes
(’) to stop the shell from expanding it before passing the argument
to your search tool.

Example:

Instead of grep [qxz] test, use grep ’[qxz]’ test - these single
quotes are unnecessary when using RegExps outside the shell
(within nano, for example).

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

Lecture Outline

1 Intro to Regexps
Meet Grep
Meet RegExps

2 RegExp Specifics
Basic RegExp Syntax
RegExp Repetition
Special Characters

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

Matching Any Number

RegExps gain a lot of their flexibility through their handling of
repeated expressions. A RegExp pattern followed by one of these
repetition operators defines how many times that pattern should
be matched.

Free Repeat

<expr>*

Matches any number of repetitons of <expr>

”any number” includes zero!

We can use * to match repeated strings, such as ab*a = abba

Can also combine with other RegExps!

.* is equivalent to the * wildcard

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

Matching One or Fewer

Let’s say we have an item which is optional - either it’s there or
not. We don’t care, as long as it’s not there more than once.

Optional Expression

<expr>?

An expression followed by a ? will be matched at most once.

Note:

grep requires special care when handling many special characters
on the command line. For now, if you want to practice these types
of RegExps, use the search tool within less (by typing / followed
by the RegExp) or your favorite editor.

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

Matching One or More

We can already match a pattern many times by using *, but what
if we want to ensure that the pattern gets matched at least once?

Required Expressions

There are two ways to accomplish this:

The + symbol matches the preceding pattern at least once.

Repeat the pattern to be matched once, following the second
with a *

Example:

To match a line beginning with one or more capital letters:

^[A-Z]+ or

^[A-Z][A-Z]*

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

Matching a Range of Repetitons

More Specific Repetitions

{n} : preceding item is matched exactly n times

{n,} : item is matched n or more times

{n,m} : preceding item is matched at least n times, but no
more than m times

How would you use these RegExp patterns to search a document
for words longer than 6 letters?
What if you wanted to exclude proper names?

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

Two More Expression Types

Grouping Expressions

(expr) : Matches expr

Useful for grouping expressions together

Can do things like k(abb)* to find k, kabb, kabbabb, etc.

The ’or’ Operator

<expr1>|<expr2> : Matches expr1 or expr2

Think [xy] for multi-character expressions

(dos)|(DOS) matches dos or DOS, but not Dos (as
[dD][oO][sS] would)

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

Lecture Outline

1 Intro to Regexps
Meet Grep
Meet RegExps

2 RegExp Specifics
Basic RegExp Syntax
RegExp Repetition
Special Characters

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

Using Reserved Characters

Okay, we can match a bunch of patterns numbers and letters.

How can we match all lines beginning with a period (.)?

Escaping Characters

The backslash (\) is used in UNIX to ”escape” the following
character, either to give it special meaning or (in this case) to
remove the special meaning that it has. If you want to search for a
special symbol using a RegExp, it must be preceded by a backslash.

grep ’^\.’ will match all lines beginning with a period.

Lecture 7: Regular Expressions

Intro to Regexps
RegExp Specifics

Basic RegExp Syntax
RegExp Repetition
Special Characters

Escaping Characters in Grep

From the grep Manual:

In basic regular expressions the metacharacters ?, +, {, }, |, (, and
) lose their special meaning; instead use the backslashed versions
\?, \+, \{, \}, \|, \(, and \).

Now we can use grep to search for some more interesting patterns:

Example:

grep ’[0-9]\{3\}-[0-9]\{4\}’ : phone number syntax (i.e.
555-5291)

grep ’“\?Hello?”\?’ : Matches Hello? with or without
quotes

Lecture 7: Regular Expressions

	Intro to Regexps
	Meet Grep
	Meet RegExps

	RegExp Specifics
	Basic RegExp Syntax
	RegExp Repetition
	Special Characters

