
More About BASH
Screen

Lecture 6:
Using BASH Effectively

CS2042 - UNIX Tools

October 10, 2008

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

Lecture Outline

1 More About BASH
Variables
Making BASH Work for You
Pattern Matching (Globbing)

2 Screen
What Where Why?
Handy Key Commands

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

What Else Is There?

There have been many shells created over the years for UNIX
environments:

bash - default shell for OSX and most Linux machines

csh - default shell for BSD-based systems

zsh - possibly the most fully-featured shell

A frighteningly thorough comparison of the features of many
shells can be found here.

Since bash is the gold standard of shells and has more than
enough features for this course, we’ll stick with it.

Lecture 6: BASH

http://en.wikipedia.org/wiki/Comparison_of_computer_shells

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

How do we use BASH?

The servers we use for this class will automatically put us into csh,
not bash.

If you are already logged in to the server, just type bash.

If you want the server to automatically put you into bash, you may
want to add the following to ∼/.login.

Convert to bash from csh on start up

if (-f /bin/bash) exec /bin/bash --login

Note that ∼/.login gets executed each time you log in to the
server and csh starts up. Conversely, ∼/.cshrc gets executed every
time you enter the C-shell even if you were already logged in.

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

BASH and Variables

BASH is a full-fledged programming language in addition to a
handy shell. If you wanted to, you could write a web server
using BASH scripting.

To get anything done in a programming language, you need
support for variables. Variables in BASH are preceded by a
dollar sign ($).

The contents of any variable can be listed using the echo
command.

Example:

echo $SHELL
/bin/bash

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

Environment Variables

Environment variables are generally used by the system to define
aspects of operation. Most of these should not (or cannot) be
changed by the user.

$SHELL - which shell will be used by default

$PATH - a list of directories to search for binaries

$HOSTNAME - the hostname of the machine

$HOME - current user’s home directory

...and many others which don’t concern us

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

Local Variables

While we don’t get much mileage out of many of our system’s
environment variables, BASH also allows us to define our own.

Example:

x=3
echo $x
3

We can also use export to define variables.

Example:

export seven=7
echo $seven
7

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

Lecture Outline

1 More About BASH
Variables
Making BASH Work for You
Pattern Matching (Globbing)

2 Screen
What Where Why?
Handy Key Commands

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

Tab Completion

Did You Know?

You can use the Tab key to auto-complete commands, parameters,
and file and directory names. If there are multiple choices based on
what you’ve typed so far, BASH will list them.

Try this at home!!

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

Modifying Your Prompt

The environment variable $PS1 stores your default prompt. You
can modify this variable to spruce up your prompt if you like.

Example:

First, echo $PS1 to see what its value is for now.
\s-\v\$ (default)

It consists mostly of backslash-escaped special characters, like \u.
There are a whole bunch of options, all of which can be found
online here.

Lecture 6: BASH

http://www.gnu.org/software/bash/manual/bashref.html#Printing-a-Prompt

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

Modifying Your Prompt, cont.

Once you have a prompt you like, set your $PS1 variable.

Define your prompt

export PS1=”<new prompt string>”

Type this line at the command prompt to temporarily change
your prompt (good for testing)

Add this line to ∼/.bashrc or ∼/.bash profiles to make the
change permanent!

Note: Parentheses must be used to invoke the \ characters.

Some example BASH prompts

PS1=”\u-\h \w\$” → mjm458-csug06 ∼$

PS1=”money\j\t ” → money014:23:57

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

Lecture Outline

1 More About BASH
Variables
Making BASH Work for You
Pattern Matching (Globbing)

2 Screen
What Where Why?
Handy Key Commands

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

More Wildcards!

Earlier we mentioned how useful ”wild card” characters can be
when looking for a particular file or trying to perform operations on
a group of files. Let’s take a closer look at wildcards which can:

Match any string

Match a single character

Match a single restricted character

Match a restricted range of characters

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

The String

The * Wildcard

* - Matches any string, including the null string (an empty string,
nothing)

Examples:

Input Matched Not Matched
lec* lecture1.pdf, lecture2.doc, lectures/ election data/
.mp foo.mp3, bar.mpeg, .mplayer/ mp3s/, tmp/
mi*r mirror, mir, minor, mine.rar mi, mine

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

The Character

The ? Wildcard

? - Matches any single character (number, letter, punctuation!)

Examples:

Input Matched Not Matched
lecture?.pdf lecture1.pdf, lecture2.pdf lecture12.pdf
foo.mp? foo.mp3, foo.mp4, foo.mpg foo.mpeg,
min? mine, mind, ming, mint, mink minute, min

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

The Character Range

The [...] Wildcard

[] - Matches any one of a list of comma-separated characters. A
dash between two characters indicates a range to be matched.

Examples:

Input Matched Not Matched
lecture[1,2].pdf lecture1.pdf, lecture2.pdf lecture5.pdf
vacation[4-9].jpg vacation7.jpg, vacation9.jpg vacation3.jpg
[a-z,A-Z][0-9].gif a8.gif, M4.gif, Z0.gif aY3.gif, 8a.gif

Lecture 6: BASH

More About BASH
Screen

Variables
Making BASH Work for You
Pattern Matching (Globbing)

Putting Them Together

These wildcards are handy individually, but by using them in
combination with each other, they become very powerful.

Examples:

Input Matched Not Matched
i[a-z]e gift ideas, profile.doc, notice dRiVeR.eXe

[b,f][a,o][r,o].mp? foo.mp3, bar.mp4, for.mpg foo.mpeg
*min[a-z]y minty, pepperminty, mindy minutely, hominy

Lecture 6: BASH

More About BASH
Screen

What Where Why?
Handy Key Commands

Lecture Outline

1 More About BASH
Variables
Making BASH Work for You
Pattern Matching (Globbing)

2 Screen
What Where Why?
Handy Key Commands

Lecture 6: BASH

More About BASH
Screen

What Where Why?
Handy Key Commands

What is the Problem?

There are a few problems with your basic BASH session. Some of
these you may even have encountered already:

Your session isn’t preserved if you close your ssh connection

It’s a pain to switch back and forth between files/the prompt

Sometimes using two or three shells at once would be really
convenient!

All of these complaints can be resolved by using screen.

Lecture 6: BASH

More About BASH
Screen

What Where Why?
Handy Key Commands

Intro to Screen

The screen Command

screen - a screen manager with terminal emulation

(Lets you do all that cool stuff from the last slide!)

Generally screen can be used just as you would normally use a
terminal window. However, special commands can be used to allow
you to save your session, create extra shells, or split the window
into multiple independent panes.

Passing Commands to screen

Each screen command consists of CTRL-a (hereafter referred to
as C-a) followed by another character (case-sensitive!).

Lecture 6: BASH

More About BASH
Screen

What Where Why?
Handy Key Commands

Screen in Action

A screenshot of a screen terminal:

Lecture 6: BASH

More About BASH
Screen

What Where Why?
Handy Key Commands

Detaching/Reattaching

Detach a screen

C-a d

Detaches the current screen session, allowing you to resume it
later from a different location without losing your work!

Resume a screen

screen -r [pid.tty.host]

Resumes a detached screen session

screen -x [pid.tty.host]

Attach to a non-detached screen session

If you have only one screen, the [pid.tty.host] string is unnecessary.

Lecture 6: BASH

More About BASH
Screen

What Where Why?
Handy Key Commands

Identifying Screen Sessions

Screen Listing

screen -ls or screen -list

Lists your screen sessions and their statuses

These screen sessions are the [pid.tty.host] strings required for
resuming!

Resuming a Screen

If screen -ls returns 9951.pts-2.fuzz (Detached)...

screen -r 9951.pts-2.fuzz will resume our screen

Lecture 6: BASH

More About BASH
Screen

What Where Why?
Handy Key Commands

Lecture Outline

1 More About BASH
Variables
Making BASH Work for You
Pattern Matching (Globbing)

2 Screen
What Where Why?
Handy Key Commands

Lecture 6: BASH

More About BASH
Screen

What Where Why?
Handy Key Commands

Creating More Shells

Create a New Shell Window

C-a c

Creates a new shell in a new window and switches to it

Useful for opening multiple shells in a single terminal

Concept is similar to tabbed browsing/tabbed IMs

But how do we switch between windows? (hint: every window is
numbered by order of creation)

Window Selection

C-a 0 - Switch to window 0
C-a 9 - Switch to window 9

Lecture 6: BASH

More About BASH
Screen

What Where Why?
Handy Key Commands

Splitting Screen

Split Screen Computing

C-a S - splits your terminal area into multiple panes
C-a tab - changes the input focus to the next pane

The ’S’ is case-sensitive!

Each split results in a blank pane

Use C-a c to create a new shell in a pane

Use C-a <num> to move an existing window to a pane

Note:

When you reattach a split screen, the split view will be gone. Just
re-split the view, then switch between panes and reopen the other
windows in each with C-a <num>

Lecture 6: BASH

	More About BASH
	Variables
	Making BASH Work for You
	Pattern Matching (Globbing)

	Screen
	What Where Why?
	Handy Key Commands

