
Navigation
File Handling

Users & Permissions
Exercises

Lecture 2: Getting Around

CS2042 - UNIX Tools

October 1, 2008

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Introduction to Your Shell
Changing Directories

Lecture Outline

1 Navigation
Introduction to Your Shell
Changing Directories

2 File Handling
Creation
Deletion
Copying, Moving, and Renaming

3 Users & Permissions
Users and Groups
File Permissions

4 Exercises

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Introduction to Your Shell
Changing Directories

First Things First...

Learn to love this view!

Graphical User Interfaces (GUIs) aren’t standardized
Most tasks can be accomplished right in the shell

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Introduction to Your Shell
Changing Directories

Your Most Important Command

You just saw a new command - how do you figure out what it
does?

The man Command

man <command name>

Brings up the manual page (manpage) for the selected
command

Unlike Google results, manpages are system-specific

Gives a pretty comprehensive list of all possible
options/parameters

Use /<keyword> to perform a keyword search in a manpage

The n-key jumps to successive search results

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Introduction to Your Shell
Changing Directories

Your Second-Best Friend

Google can be the easiest reference for more general usage
questions

For example, searching for ”remove non-full directory linux”
may be faster than searching all of the options in the rm
manpage

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Introduction to Your Shell
Changing Directories

Lecture Outline

1 Navigation
Introduction to Your Shell
Changing Directories

2 File Handling
Creation
Deletion
Copying, Moving, and Renaming

3 Users & Permissions
Users and Groups
File Permissions

4 Exercises

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Introduction to Your Shell
Changing Directories

But Where Are We?

Many shells will use the current path in their prompt. If not...

Print Working Directory

pwd

Prints the full path to the current directory

Handy on minimalist systems when you get lost

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Introduction to Your Shell
Changing Directories

Where Can We Go?

Before we can change directories, we need to know what options
we have.

The ls Command

ls [options] [file]

Lists directory contents (including subdirectories!)

Works like the dir command from DOS

The -l option lists detailed file/directory information - we’ll
use this later!

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Introduction to Your Shell
Changing Directories

Getting There

Change Directory

cd [dirname]

Changes directories to [dirname]

If not given a destination, defaults to the current user’s home
directory

Same command used in DOS

Can be given either an absolute path or a relative path to the
destination directory

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Introduction to Your Shell
Changing Directories

Relative Paths

An absolute path gives the location to a file or folder starting at /
(the root directory).

Example:

Most system libraries are stored in /lib. User-specific libraries are
usually stored in /usr/lib.

A relative path gives the location to a file or folder beginning at
the current directory.

Example:

Typing cd lib from the / directory sends you to /lib. From the
/usr directory, typing cd lib sends you to /usr/lib.

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Introduction to Your Shell
Changing Directories

Relative Path Shortcuts

∼ : Current user’s (your) home directory, or
/home/<username>

. : The current directory (this does come in handy, promise!)

.. : Parent directory of the current directory

Example:

If we start in /usr/local/src...

∼ -> /home/<username>

. -> /usr/local/src

.. -> /usr/local

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Creation
Deletion
Copying, Moving, and Renaming

Lecture Outline

1 Navigation
Introduction to Your Shell
Changing Directories

2 File Handling
Creation
Deletion
Copying, Moving, and Renaming

3 Users & Permissions
Users and Groups
File Permissions

4 Exercises

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Creation
Deletion
Copying, Moving, and Renaming

Creating a New File

The simplest way to create an empty file is by using the touch
command.

Using touch:

touch [options] <file>

Adjusts the timestamp of the specified file

With no options, uses the current date/time

More importantly, if the file doesn’t exist, touch creates it

File extentions (.exe, .txt, etc) often don’t matter in UNIX. Using
touch to create a file results in a blank plain-text file - you don’t
need to add ”.txt” to use it.

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Creation
Deletion
Copying, Moving, and Renaming

Creating a New Directory

This one is a little more straightforward, as it’s a single-use
program.

Make Directory

mkdir [options] <directory>

Makes a new directory with the specified name

Can use relative/absolute paths to make directories outside
the current one

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Creation
Deletion
Copying, Moving, and Renaming

Lecture Outline

1 Navigation
Introduction to Your Shell
Changing Directories

2 File Handling
Creation
Deletion
Copying, Moving, and Renaming

3 Users & Permissions
Users and Groups
File Permissions

4 Exercises

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Creation
Deletion
Copying, Moving, and Renaming

Deleting a File

Removing files is at least as important as creating them, but it’s a
lot more dangerous too - there is no easy way to undo a file
deletion.

Remove File

rm [options] <filename>

Using wildcards allows you to remove multiple files with a single
command.

The Asterisk

rm * - Removes every file in the current directory
rm *.jpg - Removes every .jpg file in the directory
rm *7* - Removes every file with a 7 in its name

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Creation
Deletion
Copying, Moving, and Renaming

Deleting a Directory

By default, rm can’t remove directories - we have a special
command for that.

Remove Directory

rmdir [options] <directory>

Removes an empty directory

The opposite of mkdir

Throws an error if the directory is not empty

To delete a directory with all of its subdirectories and file
contents, use rm -r <directory>. But be careful!

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Creation
Deletion
Copying, Moving, and Renaming

Lecture Outline

1 Navigation
Introduction to Your Shell
Changing Directories

2 File Handling
Creation
Deletion
Copying, Moving, and Renaming

3 Users & Permissions
Users and Groups
File Permissions

4 Exercises

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Creation
Deletion
Copying, Moving, and Renaming

Copying Files and Folders

Copy

cp [options] <file> <destination>

Copies a file from one location to another

To copy multiple files, use the asterisk wildcard (*)

To copy a complete directory, use cp -r <src> <dest>

Example:

cp *.mp3 ∼/mp3s/ - copies all .mp3 files from the current
directory to /home/<username>/mp3s/

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Creation
Deletion
Copying, Moving, and Renaming

Moving Files and Folders

More straightforward than cp, automatically recurses for
directories.

Move

mv [options] <source> <destination>

Moves a file or directory from one place to another

Also used for renaming - just move from <oldname> to
<newname>!

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Users and Groups
File Permissions

Lecture Outline

1 Navigation
Introduction to Your Shell
Changing Directories

2 File Handling
Creation
Deletion
Copying, Moving, and Renaming

3 Users & Permissions
Users and Groups
File Permissions

4 Exercises

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Users and Groups
File Permissions

Users

Unix was designed to allow multiple people to use the same
machine at once. This raises some security issues though - how do
we keep our coworkers from reading our email, browsing our photo
albums, etc?

Rather than allowing everyone full access to the same files,
access can be restricted to certain users’ accounts.

All accounts are presided over by the Superuser, or ”root”,
account

Each user has absolute control over any files he/she owns,
which can only be superceded by root

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Users and Groups
File Permissions

Groups

Files are also assigned to groups of users, allowing certain
modifications to be performed only by members of that group.

For Example:

If each member of this class had an account on the same server, it
would be wise to keep your assignments private - that is a
user-based restriction. However, if there were a class wiki hosted
on the server, we would want everyone in this class to be able to
edit it, but nobody outside this class. That situation would require
all of our user accounts to belong to the same group.

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Users and Groups
File Permissions

Lecture Outline

1 Navigation
Introduction to Your Shell
Changing Directories

2 File Handling
Creation
Deletion
Copying, Moving, and Renaming

3 Users & Permissions
Users and Groups
File Permissions

4 Exercises

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Users and Groups
File Permissions

File Ownership

Each file is assigned to a single user and a single group.
Ownership is usually written user:group.

For example, your files will typically belong to yourname:users.
Root’s files belong to root:root.

Generally it is up to root to change file ownership, as a regular
user can’t take ownership of someone else’s files, and they
can’t pass ownership of their files to another user (or to a
group they don’t belong to.)

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Users and Groups
File Permissions

Discovering Permissions

A familiar command can tell us about the ownership and
permissions of files.

Listing Revisited

ls -l [file/dir]

Lists file/directory info in a long format

Can pass ls a different directory, or it defaults to .

File permissions usually look something like this:

-rwxrwxrwx user37:users

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Users and Groups
File Permissions

Cracking the Format

-rwxrwxrwx
User’s permissions

Group’s permissions

Others’ permissions

R = Read, W = Write, X = Execute

Directory permissions begin with a ”d” instead of a ”-”.

What would the permissions -rw-rw-r– mean?

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Users and Groups
File Permissions

Changing Permissions

Tight control over file access is a major strength of Unix. So how
do you change the permissions of your files?

Change Mode

chmod <mode> <file>

Changes file/directory permissions based on <mode>

The format for <mode> is a combination of 3 fields:

Who is affected (any combination of u, g, or o)

Whether adding or removing permissions (+ or -)

Which permissions are being added/removed (any
combination of r, w, x)

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Users and Groups
File Permissions

Changing Permissions, cont.

Mode Example:

ug+rx - adds read and execute permissions for user and group
o-w - removes write permissions for others (no public writing)

What would chmod ugo-rwx textfile do?

Lecture 2: Getting Around



Navigation
File Handling

Users & Permissions
Exercises

Exercises!

1 Make a directory newdir with a subdirectory subdir.

2 Create a file test1 in newdir; copy it into subdir.

3 Rename newdir/subdir/test1 to test2.

4 Change the permissions on test2 so that everyone can read it,
but only the user and group can write to it.

Lecture 2: Getting Around


	Navigation
	Introduction to Your Shell
	Changing Directories

	File Handling
	Creation
	Deletion
	Copying, Moving, and Renaming

	Users & Permissions
	Users and Groups
	File Permissions

	Exercises

