
More Handy Shell Features
Control Flow and Loops

Functions

Lecture 10:
More Bash Scripting

CS2042 - UNIX Tools

October 22, 2008

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Arithmetic
Arrays

Lecture Outline

1 More Handy Shell Features
Arithmetic
Arrays

2 Control Flow and Loops
Case and Select
While Loops
For Loops

3 Functions
Breaking Up a Script
Local vs. Global Vars

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Arithmetic
Arrays

Basic Operators

While shell scripts are usually used to automate more complex
tasks, occasionally a little arithmetic comes in handy. Here is a
partial list of operators that you can use:
Syntax: Meaning:

a++, a−− Post-increment/decrement (add/subtract 1)
++a, −−a Pre-increment/decrement
a+b, a-b Addition/subtraction
a*b, a/b Multiplication/division
a%b Modulo (remainder after dividing)
a**b Exponential
a>b, a<b Greater than, less than
a==b, a!=b Equality, inequality
=, +=, -= Assignments

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Arithmetic
Arrays

Using Arithmetic Expressions

There are two good ways to use arithmetic: as its own operation
using variables, or in an expansion as part of a larger command.

The “Let” Built-In

let VAR=$1+15

Evaluates all following expressions

It is generally good form to use the $[EXPRESSION] syntax to
perform arithmetic expansions. Note that this only calculates the
result of EXPRESSION, and does no tests.

Example:

echo $[323*17]

5491

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Arithmetic
Arrays

Lecture Outline

1 More Handy Shell Features
Arithmetic
Arrays

2 Control Flow and Loops
Case and Select
While Loops
For Loops

3 Functions
Breaking Up a Script
Local vs. Global Vars

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Arithmetic
Arrays

Defining Arrays

An array is a variable containing multiple values. There are three
different ways to create an array:

Declaring an Array

declare -a arrayname

Explicit declaration, empty until modified

arrayname[index number]=value

Puts value in the specified position of a new array

arrayname=(value1 value2 ... valueN)

Creates an array using the given values, indexed sequentially

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Arithmetic
Arrays

Accessing Arrays

Once we have created an array, accessing its individual elements is
a little different from standard variables. First, we need to add an
index to indicate which element we want. Second, we have to add
curly braces like this:

${arrayname[index]}

Example:

array=(’Cornell University’ CS2042 ’Intro to Unix’)
echo ${array[2]}

Intro to Unix

The special indices ’@’ and ’*’ reference all members of an
array.

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Case and Select
While Loops
For Loops

Lecture Outline

1 More Handy Shell Features
Arithmetic
Arrays

2 Control Flow and Loops
Case and Select
While Loops
For Loops

3 Functions
Breaking Up a Script
Local vs. Global Vars

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Case and Select
While Loops
For Loops

Multiple Options

Let’s say we want a conditional with 6 different options, so our
script can do 6 different things depending on its first argument.

Simplest way: an if statement, 4 elifs, and an else

Is there a better way?

The Case Statement

case EXPRESSION in CASE1) command-list;; CASE2)
command-list;; ... CASEN) command-list;; esac

Attempts to match EXPRESSION to a CASE, then executes
the corresponding commands

CASEs are expressions matching a pattern (using Bash
wildcards, or not)

EXPRESSION can be a variable, command output, or a shell
expansion

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Case and Select
While Loops
For Loops

A Case Example

Example:

#! /bin/bash
This script prints the # of days in the month.
MONTH=$(date +%b)
case $MONTH in

Jan|Mar|May|Jul|Aug|Oct|Dec)
NUMDAYS=31;;

Apr|Jun|Sep|Nov)
NUMDAYS=30;;

Feb) NUMDAYS=28;;
esac
echo “This month of $MONTH has $NUMDAYS days.”
exit

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Case and Select
While Loops
For Loops

The Select Statement

Here is a simple way to get Bash to make a menu for you:

Example:

#! /bin/bash
Simple example of a select statement
PS3=’Choose an option: ’
select WORD in “Linux” “Bash” “CS2042” “Cornell”
do
echo ”The word you chose is $WORD.”
Break, or else we’ll get stuck in a loop
break
done

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Case and Select
While Loops
For Loops

Lecture Outline

1 More Handy Shell Features
Arithmetic
Arrays

2 Control Flow and Loops
Case and Select
While Loops
For Loops

3 Functions
Breaking Up a Script
Local vs. Global Vars

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Case and Select
While Loops
For Loops

Our Simplest Loop

What if we want to repeat a task several times?

Can just type the commands over and over

Okay, well, what if we want to repeat a task infinitely?

Either way, use loops!

While Loops

while condition; do command-list; done

Executes command-list until ’condition’ no longer returns true

When ’condition’ fails, the script continues with the command
following ’done’

’condition’ can be any expression or command that returns a
status

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Case and Select
While Loops
For Loops

Until Loops

Syntax

until test-command; do command-list; done

Executes command-list until test-command returns true

Same as a while loop with an inverted condition

Example:

while true; do sleep 1; done

Will loop indefinitely

until false; do sleep 1; done

So will this!

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Case and Select
While Loops
For Loops

Lecture Outline

1 More Handy Shell Features
Arithmetic
Arrays

2 Control Flow and Loops
Case and Select
While Loops
For Loops

3 Functions
Breaking Up a Script
Local vs. Global Vars

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Case and Select
While Loops
For Loops

Fixed-Length Loops

Let’s say we want to backup each .txt file in a directory by copying
it to filename.txt.bak.

For Loops

for name in word; do list; done

Expands word into a list of items

Replaces name with each item as it performs list

Example:

for FILE in `ls *.txt`; do cp $FILE $FILE.bak; done

Adds the .bak extension to copies of all our .txt files

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Case and Select
While Loops
For Loops

A Good Example

Example:

#! /bin/bash
Reverts our .txt files to their .bak copies
LIST=$(ls *.txt.bak)
for FILE in $LIST; do
Strip the .bak off our filenames

file2=$(echo $FILE | sed ’s/\.bak//’)
mv $FILE $file2

done
exit 0

This script will replace all our backed up .txts with their .bak
counterparts.

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Breaking Up a Script
Local vs. Global Vars

Lecture Outline

1 More Handy Shell Features
Arithmetic
Arrays

2 Control Flow and Loops
Case and Select
While Loops
For Loops

3 Functions
Breaking Up a Script
Local vs. Global Vars

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Breaking Up a Script
Local vs. Global Vars

Why We Need Functions

What is a Function?

Shell functions are a way to group commands together for later
execution, using a single name for the group.

Functions provide us with some seriously handy properties:

Abstraction

We can focus on individual building blocks rather than the
whole structure

Modularity

Wrote a handy, generalized function? Use it in your other
scripts!

Readability

Smaller code blocks are easier to wrap your mind around

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Breaking Up a Script
Local vs. Global Vars

Defining Our Own Functions

There are two ways to define functions of your own:

Function Syntax

function name { commands; }
name () { commands; }

Parentheses are required if the ’function’ keyword isn’t used

Spaces between curly braces and commands are required!

End command list with either a semicolon or a newline.

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Breaking Up a Script
Local vs. Global Vars

Lecture Outline

1 More Handy Shell Features
Arithmetic
Arrays

2 Control Flow and Loops
Case and Select
While Loops
For Loops

3 Functions
Breaking Up a Script
Local vs. Global Vars

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Breaking Up a Script
Local vs. Global Vars

Scope

When you define a variable, its use is limited to a certain context,
or scope. By default, variables are declared globally, meaning that
they can be accessed and modified from anywhere in the script.
Local variables are defined only for the context in which it was
created.

Example:

VAR=”global variable”
function func {

local VAR=”local variable”
echo $VAR; }

Execute our new function!
func
echo $VAR

Lecture 10: Scripting, cont.

More Handy Shell Features
Control Flow and Loops

Functions

Breaking Up a Script
Local vs. Global Vars

Using Function Parameters

We know how to access shell script parameters ($1-$n, remember?).
What if we need to pass parameters to a function?

Use the same variables!

Anything following a function call is automatically created as a local
version of $1-$n

Example:

function function A {
echo $1; }

function A “A function parameter!”
echo $1

./example.sh “A script parameter!”

A function parameter!
A script parameter!

Lecture 10: Scripting, cont.

	More Handy Shell Features
	Arithmetic
	Arrays

	Control Flow and Loops
	Case and Select
	While Loops
	For Loops

	Functions
	Breaking Up a Script
	Local vs. Global Vars

