
An Introduction to Mercurial Version
Control Software

CS595, IIT
[Doc Updated by H. Zhang] Oct, 2010

Satish Balay
balay@mcs.anl.gov

mailto:balay@mcs.anl.gov

Outline
● Why use version control?
● Simple example of revisioning
● Mercurial introduction

- Local usage
- Remote usage
- Normal user workflow
- Organizing repositories [clones]

● Further Information
● [Demo]

What do we use Version Control for?
● Keep track of changes to files
● Enable multiple users editing files simultaneously
● Go back and check old changes:

 * what was the change

 * when was the change made

 * who made the change

 * why was the change made
● Manage branches [release versions vs development]

Simple Example of Revisioning

main.cmain.c

0 1 2 3File Version

File Changes

Delta

Simple Example Cont.

Repository
Version

-1

main.cmain.c

1 2 3

main.cmain.c

0

main.cmakefile

0 1

310 2

Changeset

Concurrent Changes to a File by Multiple
Users

& Subsequent Merge of Changes

Line1
UserA
Line2
Line3
Line4

Line1
Line2
Line3
UserB
Line4

Line1
UserA
Line2
Line3
UserB
Line4

Line1
Line2
Line3
Line4

Initial file UserA edit UserB edit Merge edits by both users

Branch Merge

Revision Graph

r-1

r-2

r-3

r-4

Merge tools:
● kdiff3
● meld
Merge types:
● 2-way
● 3-way

Some Definitions
● Delta: a single change [to a file]

● Changeset: a collection of deltas [perhaps to multiple
files] that are collectively tracked. This captures a
snapshot of the current state of the files [as a revision]

● Branch: Concurrent development paths for the same
sources

● Merge: Joining changes done in multiple branches into a
single path.

● Repository: collection of files we intend to keep track of.
This includes the revision graph/history [or metadata]

● Version [or Source] Control Tool: Enables us to keep
track of all the changes [to all files] in a repository

Version Control Tools
● File Level Control

 SCCS
 RCS

● Centralized [or Client/Server]
 CVS
 Subversion

● Distributed
 Mercurial
 Git

http://en.wikipedia.org/wiki/List_of_revision_control_software

http://en.wikipedia.org/wiki/List_of_revision_control_software

Mercurial
● Distributed version control tool.

● Open Source [GPL]

● Started by Matt Mackall in 2005, has many contributors

● Written in python

● Works on Linux, Windows, OS X and other systems.

● Reasonably efficient [handles 10,000+ changesets in
PETSc]

● Active mailing list: mercurial@selenic.com

● http://www.selenic.com/mercurial

Usage: Creating a Repository
● mkdir project
● cd project
● hg init
● Initializes the directory 'project' as a mercurial repo.
● It is currently an empty repository [i.e no files added]
● All 'hg' commands are invoked inside the repository
● All commands are in the form 'hg command'. For

example : hg help
● Stores metadata in the subdirectory project/.hg

Usage: Adding/Modifying Files
● cd project

● touch main.c [create or edit a file]

● hg add main.c

● hg commit

● emacs main.c [edits to file]

● hg commit [recommend alternative: hg qct]

● 'add' indicates the file is now part of the repository.

● 'commit' creates a changeset for the current changes.
[prompts the user to enter comments]

● Note: use hg commit -A to add/commit all new files

Illustration of Changes
repository

working
files

Metadata
[.hg/]

repository repository
hg commit

file changes
changeset

Revision Graph View [Metadata]

Working files

Parent version
of working files

Repository Data vs Working Files
● Repository data is the revision history and graph of all

the changes. Its stored in project/.hg directory

● Working files are the reset of the files in project. User
edits the working files.

● hg tip [show the tip revision of the repository graph]

● hg parent [show the parent revision of the working dir]

Note: Working files can correspond to any revision of the
repository. So one has to be careful about this point [and
not assume the parent is always the tip revision]

● hg update REV [update working copy to REV version]

Checking Status/History

● hg status [list the current modified, unknown files]

● hg diff [list the diff of the changed files in patch form]

● hg log [list the revision history of all changes]

● hg view [extension: GUI tool to check changeset graph]

● hg qct [external: GUI tool to check and commit changes]

Note: So far we have covered local operations on the repository

Distributed Model
● Information flows between repositories as changesets.

● Each operation is between two repositories [metadata].

● hg clone /home/balay/repoA repoB

● cd repoB [Local repository to invoke commands]

● hg pull [repoA] [get remote changesets and apply locally]

● hg push [repoA] [apply local changesets to the remote repo]

Notes:

● Every clone repository has complete revision history [metadata].

● Peer to peer: all copies of repositories are equivalent.

● One can switch roles of repoA & repoB.

● Remote operations are between repositories [as opposed to local
operations – discussed in the previous slides]

URLs/ Communication Mechanism
hg help pull [documentation of urls]

● /home/balay/petsc-dev

● ssh://petsc@petsc.cs.iit.edu//hg/petsc/petsc-dev

● http://petsc.cs.iit.edu/petsc/petsc-dev [readonly]

● http-old://www.mcs.anl.gov/~petsc/project [readonly]

● https:// [read/write support]

Notes:

● 'hg clone' stores the URL for remote repository [in .hg/hgrc].
When push/pull operations are invoked, default URL is used.

● Require [remote] read access for pull, write access for push.

● Email changesets via 'hg bundle' [if necessary].

http://petsc.cs.iit.edu/petsc/petsc-dev

Organizing Repositories [clones]

Any to Any
Shared Common

Methods of communicating changes
●clone/push/pull [changesets]
●import/export [email patch]
●bundle/unbundle [email
changesets]

The relations are not hardcoded

Syncing Two Repositories with
Changesets to Remote Repository

repository-local

working
files metadata

repository-remote

repository-local repository-remote

repository-local repository-remote

Remote repo has
extra changesets

hg pull

hg update

Syncing Two Repositories with
Changesets to Local Repository

repository-remote

working
files metadata

repository-local

repository-remote repository-local

Local repo has
extra changesets

hg push

Updating Working copy of remote is not done.

Syncing Two Repositories with
Changesets to both Repositories

repository-local
working

files metadata

repository-remote

repository-local repository-remoteB

Both repos have
extra changesets

hg pull

A B

repository-local repository-remotehg push

repository-local repository-remoteBA+B
hg commit

repository-local repository-remoteBhg merge
B

A+BA+B

Revision Graph Change
[Local Repository]

Initial
A

B
Initial

B
Initial

A

A+B
A

A: local repo changeset
B: remote repo changeset
A+B: merge changeset

B

B

B

A

A

A B

A

A

Normally working files
have 1 parent, but in the
merge process, they have
2 parents.

Normal User Work Flow:
[Making local changes and updating

Shared Common Repository]
● <make changes to working files>

● hg commit [commit local changes]

● hg pull [check & obtain remote changes]

● hg merge [if remote changes exist, auto merge. Or a
 manual merge via external tool like kdiff3]

● hg commit [commit the merge changeset]

● hg push [push local changesets + merge
 changesets to the remote repository]

Note: Merge is always done in the local repository

[hence the order: pull, merge, push]

Qct: Graphical Commit Tool

Helps reviewing changes before commiting.
● hg qct

Equivalent to the following normal work flow
● hg status
● hg diff
● hg commit

External tool from http://qct.sourceforge.net/

It requires PyQt4.

http://qct.sourceforge.net/

Multiple Users: Communicating
Changesets using a Shared Repository

shared

user1-clone

User Clone Repos

Shared repository

user2-clone

temp-clone-2

external-user

read only, via http

read/write via ssh

temp-clone-1

user3-clone

Managing Patches to Release
Versions

dev-shared release-shared

release-clonedev-clone

Shared Repos

User Clone Repos

1. Apply fix

2. Pull/Merge/Push to shared release repo

3. Pull/merge [from dev-clone]

4. Pull/Merge/Push to shared dev repo

Browsing changes

● hg view
● hg log
● hg annotate filename [REV]
● hg update [REV]
● hg serv [starts a web server]
● Use a web browser to browse changes

Mercurial at ada.cs.iit.edu

Further Information

● mercurial 1.6.2 is installed on the linux machine

● http://www.selenic.com/mercurial/
● http://hgbook.red-bean.com/hgbook.html
● mercurial@selenic.com

http://www.selenic.com/mercurial/
http://hgbook.red-bean.com/hgbook.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

