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Outline
● Why use version control?
● Simple example of revisioning
● Mercurial introduction

- Local usage
- Remote usage
- Normal user workflow
- Organizing repositories [clones]

● Further Information
● [Demo]



What do we use Version Control for?
● Keep track of changes to files
● Enable multiple users editing files simultaneously
● Go back and check old changes:

   * what was the change 

   * when was the change made

   * who made the change

   * why was the change made
● Manage branches [release versions vs development]



Simple Example of Revisioning
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Concurrent Changes to a File by Multiple 
Users

& Subsequent Merge of Changes
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Merge tools:
●  kdiff3
●  meld
Merge types:
●  2-way
●  3-way



Some Definitions
● Delta: a single change [to a file]

● Changeset: a collection of deltas [perhaps to multiple 
files] that are collectively tracked. This captures a 
snapshot of the current state of the files [as a revision]

● Branch: Concurrent development paths for the same 
sources

● Merge: Joining changes done in multiple branches into a 
single path. 

● Repository: collection of files we intend to keep track of. 
This includes the revision graph/history [or metadata]

● Version [or Source] Control Tool: Enables us to keep 
track of all the changes [to all files] in a repository



Version Control Tools
● File Level Control

  SCCS
  RCS

● Centralized [or Client/Server]
  CVS
  Subversion

● Distributed
  Mercurial
  Git

http://en.wikipedia.org/wiki/List_of_revision_control_software

http://en.wikipedia.org/wiki/List_of_revision_control_software


Mercurial
● Distributed version control tool.

● Open Source [GPL]

● Started by Matt Mackall in 2005, has many contributors 

● Written in python

● Works on Linux, Windows, OS X and other systems.

● Reasonably efficient [handles 10,000+ changesets in 
PETSc]

● Active mailing list: mercurial@selenic.com

● http://www.selenic.com/mercurial



Usage: Creating a Repository
● mkdir project
● cd project
● hg init
● Initializes the directory  'project' as a mercurial repo.
● It is currently an empty repository [i.e no files added]
● All 'hg' commands are invoked inside the repository
● All commands are in the form 'hg command'. For 

example : hg help
● Stores metadata in the subdirectory project/.hg



Usage: Adding/Modifying Files
● cd project

● touch main.c         [create or edit a file]

● hg add main.c

● hg commit

● emacs main.c        [edits to file]

● hg commit             [recommend alternative: hg qct ]

● 'add' indicates the file is now part of the repository.

● 'commit' creates a changeset for the current changes. 
[prompts the user to enter comments]

● Note: use hg commit -A to add/commit all new files
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Repository Data vs Working Files
● Repository data is the revision history and  graph of all 

the changes. Its stored in project/.hg directory

● Working files are the reset of the files in project. User 
edits the working files.

● hg tip         [show the tip revision of the repository graph]

● hg parent   [show the parent revision of the working dir]

Note: Working files can correspond to any revision of the 
repository. So one has to be careful about this point [and 
not assume the parent is always the tip revision]

● hg update REV  [update working copy to REV version]



Checking Status/History

● hg status   [list the current modified, unknown files]

● hg diff      [list the diff of the changed files in patch form]

● hg log       [list the revision history of all changes]

● hg view    [extension: GUI tool to check changeset graph]

● hg qct       [external: GUI tool to check and commit changes]

Note: So far we have covered local operations on the repository



Distributed Model
● Information flows between repositories as changesets. 

● Each operation is between two repositories [metadata].

● hg clone /home/balay/repoA   repoB

● cd repoB                [Local repository to invoke commands]

● hg pull  [repoA]    [get remote changesets and apply locally]

● hg push [repoA]   [apply local changesets to the remote repo]

Notes: 

● Every clone repository has complete revision history [metadata].

● Peer to peer: all copies of repositories are equivalent.

● One can switch roles of repoA & repoB.

● Remote operations are between repositories [as opposed to local 
operations – discussed in the previous slides]



URLs/ Communication Mechanism
hg help pull                                [documentation of urls]

● /home/balay/petsc-dev

● ssh://petsc@petsc.cs.iit.edu//hg/petsc/petsc-dev

● http://petsc.cs.iit.edu/petsc/petsc-dev           [readonly]

● http-old://www.mcs.anl.gov/~petsc/project [readonly]

● https://                                           [read/write support]

Notes:

● 'hg clone' stores the URL for remote repository [in  .hg/hgrc]. 
When push/pull operations are invoked, default URL is used.

● Require [remote] read access for pull, write access for push.

● Email changesets via 'hg bundle' [if necessary].

http://petsc.cs.iit.edu/petsc/petsc-dev


Organizing Repositories [clones]

Any to Any
Shared Common 

Methods of communicating changes
●clone/push/pull [changesets]
●import/export [email patch]
●bundle/unbundle [email 
changesets]

The relations are not hardcoded



Syncing Two Repositories with 
Changesets to Remote Repository
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Syncing Two Repositories with 
Changesets to Local Repository

repository-remote

working
files metadata

repository-local

repository-remote repository-local

Local repo has
extra changesets

hg push

Updating Working copy of remote is not done.



Syncing Two Repositories with 
Changesets to both Repositories
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Normally working files 
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Normal User Work Flow:
[Making local changes and updating 

Shared Common Repository]
● <make changes to working files>

● hg commit     [commit local changes]

● hg pull           [check & obtain remote changes]

● hg merge       [if remote changes exist, auto merge. Or a
                       manual merge via external tool like kdiff3]

● hg commit     [commit the merge changeset]

● hg push          [push local changesets + merge                    
                        changesets to the remote repository]

Note: Merge is always done in the local repository

[hence the order: pull, merge, push]



Qct: Graphical Commit Tool

Helps reviewing changes before commiting.
● hg qct

Equivalent to the following normal work flow
● hg status
● hg diff
● hg commit

External tool from http://qct.sourceforge.net/

It requires PyQt4.

http://qct.sourceforge.net/


Multiple Users: Communicating 
Changesets using a Shared Repository

shared

user1-clone

User Clone Repos

Shared repository

user2-clone

temp-clone-2

external-user

read only, via http

read/write via ssh

temp-clone-1

user3-clone



Managing Patches to Release 
Versions

dev-shared release-shared

release-clonedev-clone

Shared Repos

User Clone Repos

1. Apply fix

2. Pull/Merge/Push to shared release repo

3. Pull/merge [from dev-clone]

4. Pull/Merge/Push to shared dev repo



Browsing changes

● hg view
● hg log
● hg annotate filename [REV]
● hg update [REV]
● hg serv                                  [starts a web server]
● Use a web browser to browse changes



Mercurial at ada.cs.iit.edu

Further Information

● mercurial 1.6.2 is installed on the linux machine

● http://www.selenic.com/mercurial/
● http://hgbook.red-bean.com/hgbook.html
● mercurial@selenic.com

http://www.selenic.com/mercurial/
http://hgbook.red-bean.com/hgbook.html
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