
C++ Review

CS595
Fall, 2010

Software Engineering

 A disciplined approach to the design,
production, and maintenance of
computer programs

  that are developed on time and within
cost estimates,

 using tools that help to manage the
size and complexity of the resulting
software products.

3

  Application (or user) level: modeling
real-life data in a specific context.

  Logical (or ADT) level: abstract view of
the domain and operations. WHAT

  Implementation level: specific
representation of the structure to hold
the data items, and the coding for
operations. HOW

Software from 3 different levels

 Interface:
 Common boundary between two distinct entities

interface

client implementation

C++: client.cpp header file
 *.h *.cpp

~petsc-dev/src/ksp/ksp/ksp/
 examples/tutorials/ex2.c petscksp.h impls/*

5

Structured

array struct union class

 Address

pointer reference

Simple

 Integral Floating

char short int long enum

float double long double

6

Pointer Types
Recall that …
char msg [8];

 msg is the base address of the array. We say
msg is a pointer because its value is an address.
It is a pointer constant because the value of msg
itself cannot be changed by assignment. It
“points” to the memory location of a char.

 msg [0] [1] [2] [3] [4] [5] [6] [7]

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

6000

7

Addresses in Memory
  When a variable is declared, enough memory to

hold a value of that type is allocated for it at an
unused memory location. This is the address of
the variable.

 int x;
 float number;
 char ch;

 2000 2002 2006

 x number ch

8

Obtaining Memory Addresses

  The address of a non-array variable can be obtained
by using the address-of operator &.

int x;
float number;
char ch;

cout << “Address of x is “ << &x << endl;

cout << “Address of number is “ << &number << endl;

cout << “Address of ch is “ << &ch << endl;

9

What is a pointer variable?

  A pointer variable is a variable whose value is the
address of a location in memory.

  To declare a pointer variable, you must specify the
type of value that the pointer will point to. For
example,

int* ptr; // ptr will hold the address of an int

char* q; // q will hold the address of a char

10

Using a pointer variable

 int x;
 x = 12;

 int* ptr;
 ptr = &x;

NOTE: Because ptr holds the address of x,
 we say that ptr “points to” x

 2000

 12

 x

3000

 2000

 ptr

11

 2000

 12

 x

3000

 2000

 ptr

 int x;
 x = 12;

 int* ptr;
 ptr = &x;

 cout << *ptr;

NOTE: The value pointed to by ptr is denoted by *ptr

Unary operator * is the
dereference operator

12

 int x;
 x = 12;

 int* ptr;
 ptr = &x;

 *ptr = 5; // changes the value
 // at adddress ptr to

5

Using the dereference operator

 2000

 12 5

 x

3000

 2000

 ptr

13

 char ch;
 ch = ‘A’;

 char* q;
 q = &ch;

 *q = ‘Z’;
 char* p;
 p = q; // the right side has value 4000
 // now p and q both point to ch

Another Example
 4000

 A Z

 ch

5000 6000

 4000 4000

 q p

14

The NULL Pointer

There is a pointer constant 0 called the “null
pointer” denoted by NULL in stddef.h

But NULL is not memory address 0.
NOTE: It is an error to dereference a pointer whose

value is NULL. Such an error may cause your
program to crash, or behave erratically. It is the
programmer’s job to check for this.

 while (ptr != NULL) {
 . . . // ok to use *ptr here
 }

15

Allocation of memory

 STATIC
 ALLOCATION

Static allocation
is the allocation
of memory space
at compile time.

 DYNAMIC
 ALLOCATION

Dynamic
allocation is the
allocation of
memory space at
run time by using
operator new.

16

3 Kinds of Program Data
  STATIC DATA: memory allocation exists

throughout execution of program.
 static long SeedValue;

  AUTOMATIC DATA: automatically created at
function entry, resides in activation frame of the
function, and is destroyed when returning from
function.

  DYNAMIC DATA: explicitly allocated and
deallocated during program execution by C++
instructions written by programmer using unary
operators new and delete

Using operator new

If memory is available in an area called the free
store (or heap), operator new allocates the
requested object or array, and returns a pointer
to (address of) the memory allocated.

Otherwise, the null pointer 0 is returned.

The dynamically allocated object exists until the
delete operator destroys it.

17

18

2000

ptr

Dynamically Allocated Data

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

19

Dynamically Allocated Data

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

NOTE: Dynamic data has no variable name

2000

ptr

20

Dynamically Allocated Data

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

NOTE: Dynamic data has no variable name

2000

ptr

 ‘B’

21

Dynamically Allocated Data

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

delete ptr;

2000

ptr

NOTE: Delete
 deallocates
 the memory
 pointed to
 by ptr.

 ?

The object or array currently pointed to by the
pointer is deallocated, and the pointer is
considered unassigned. The memory is returned
to the free store.

Square brackets are used with delete to deallocate a
dynamically allocated array of classes.

Using operator delete

22

Some C++ pointer operations
Precedence
 Higher -> Select member of class pointed to

 Unary: ++ -- ! * new delete
 Increment, Decrement, NOT, Dereference, Allocate, Deallocate

 + - Add Subtract

 < <= > >= Relational operators

 == != Tests for equality, inequality

Lower = Assignment

24

Dynamic Array Allocation

char *ptr; // ptr is a pointer variable that
 // can hold the address of a char

ptr = new char[5];
 // dynamically, during run time, allocates

 // memory for 5 characters and places into
 // the contents of ptr their beginning address

 ptr

6000

6000

25

Dynamic Array Allocation
char *ptr ;

ptr = new char[5];

strcpy(ptr, “Bye”);

ptr[1] = ‘u’; // a pointer can be subscripted

cout << ptr[2] ;

 ptr

6000

6000 ‘B’ ‘y’ ‘e’ ‘\0’
 ‘u’

26

Dynamic Array Deallocation
char *ptr ;
ptr = new char[5];
strcpy(ptr, “Bye”);
ptr[1] = ‘u’;

delete [] ptr; // deallocates array pointed to by ptr
 // ptr itself is not deallocated, but
 // the value of ptr is considered unassigned

 ptr

 ?

27

 int* ptr = new int;
 *ptr = 3;

 ptr = new int; // changes value of ptr
 *ptr = 4;

What happens here?

 3

 ptr

 3

 ptr

 4

28

Memory Leak

A memory leak occurs when dynamic memory (that
was created using operator new without a pointer
to it by the programmer, and so is inaccessible.

 int* ptr = new int;
 *ptr = 8;
 int* ptr2 = new int;
 *ptr2 = -5;

 How else can an object become inaccessible?

 8

 ptr

 -5

 ptr2

29

Causing a Memory Leak

 int* ptr = new int;
 *ptr = 8;
 int* ptr2 = new int;
 *ptr2 = -5;

 ptr = ptr2; // here the 8 becomes inaccessible

 8

 ptr

 -5

 ptr2

 8

 ptr

 -5

 ptr2

30

  occurs when two pointers point to the same
object and delete is applied to one of them.

 int* ptr = new int;
 *ptr = 8;
 int* ptr2 = new int;
 *ptr2 = -5;
 ptr = ptr2;

A Dangling Pointer

 8

 ptr

 -5

 ptr2

FOR EXAMPLE,

31

 int* ptr = new int;
 *ptr = 8;
 int* ptr2 = new int;
 *ptr2 = -5;
 ptr = ptr2;

 delete ptr2; // ptr is left dangling
 ptr2 = NULL;

Leaving a Dangling Pointer

 8

 ptr

 -5

 ptr2

 8

 ptr

 NULL

 ptr2

32

Valid struct operations

  Operations valid on an entire struct type variable:

 assignment to another struct variable of same type,

 pass as a parameter to a function
 (either by value or by reference),

 return as the value of a function.

Pass-by-value

CALLING
BLOCK

 FUNCTION
 CALLED

sends a copy
of the contents of
the actual parameter

So,
the actual parameter cannot be changed by the function.

33

Pass-by-reference

sends the location
(memory address)
of the actual parameter

can change value of
actual parameter

CALLING
BLOCK FUNCTION

 CALLED

34

35

Using struct type
Reference Parameter to change a member

void AdjustForInflation(CarType& car, float perCent)

// Increases price by the amount specified in perCent

{

 car.price = car.price * perCent + car.price;

} ;

SAMPLE CALL

AdjustForInflation(myCar, 0.03);

36

Using struct type
Value Parameter to examine a member

bool LateModel(CarType car, int date)

// Returns true if the car’s model year is later than or
// equal to date; returns false otherwise.

{
 return (car.year >= date) ;

} ;

SAMPLE CALL

if (LateModel(myCar, 1995))
 cout << myCar.price << endl ;

37

One-Dimensional Array at the
Logical Level

A one-dimensional array is a structured composite
data type made up of a finite, fixed size (known at
compile time) collection of homogeneous (all of
the same data type) elements having relative
positions and to which there is direct access
(any element can be accessed immediately).

Array operations (creation, storing a value,
retrieving a value) are performed using a
declaration and indexes.

38

Implementation Example

float values[5]; // assume element size is 4 bytes

This ACCESSING FUNCTION gives position of values[Index]

Address(Index) = BaseAddress + Index * SizeOfElement

Base Address

values[0] values[1] values[2] values[3] values[4]

 7000 7004 7008 7012 7016

 Indices

39

One-Dimensional Arrays in C++

  The index must be of an integral type (char,
short, int, long, or enum).

  The index range is always 0 through the array
size minus 1.

  Arrays cannot be the return type of a function.

40

Another Example

char name[10]; // assume element size is 1 byte

name[0] name[1] name[2] name[3] name[4] name[9]

 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009

Base Address

This ACCESSING FUNCTION gives position of name[Index]

Address(Index) = BaseAddress + Index * SizeOfElement

41

Passing Arrays as Parameters

  In C++, arrays are always passed
by reference, and & is not used
with the formal parameter type.

 Whenever an array is passed as a
parameter, its base address is sent
to the called function.

42

const array parameter

Because arrays are always passed as reference
parameters, you can protect the actual parameter
from unintentional changes by using const in
formal parameter list and function prototype.

FOR EXAMPLE . . .
 // prototype

 float SumValues(const float values[],
 int numOfValues);

float SumValues (const float values[],
 int numOfValues)
// Pre: values[0] through values[numOfValues-1]
// have been assigned
// Returns the sum of values[0] through
// values[numOfValues-1]
{
 float sum = 0;

 for (int index = 0; index < numOfValues; index++)
 {

 sum += values [index] ;
 }
 return sum;
}

43

Copy Structure
 (see Sec 6.4, Text)

  Shallow copy: an operation that
copies one class object to another
without copying any pointed-to data

 Deep copy: an operation that not

only copies one class object to
another but also makes copies of
any pointed-to data

44

