
1

Introduction to PETSc
KSP, PC

CS595, Fall 2010

2

PETSc

Application
Initialization Evaluation of A and b Post-

Processing

Solve
Ax = b PC

Linear Solvers (KSP)

PETSc code User code

Linear Solution

Main Routine

solvers:
linear beginner

3

Creating the KSP Context

•  C/C++ version
ierr = KSPCreate(PETSC_COMM_WORLD, &ksp);

•  Fortran version
call KSPCreate(PETSC_COMM_WORLD, ksp, ierr)

•  Provides an identical user interface for all linear
solvers
–  uniprocess and parallel
–  real and complex numbers

solvers:
linear beginner

4

Context Variables

•  Are the key to solver organization
•  Contain the complete state of an algorithm,

including
– parameters (e.g., convergence tolerance)
– functions that run the algorithm (e.g.,

convergence monitoring routine)
– information about the current state (e.g.,

iteration number)
solvers:
linear beginner

5

KSP Structure

•  Each KSP object actually contains two parts:
–  Krylov Space Method

•  The iterative method
•  The context contains information on method parameters (e.g.,

GMRES search directions), work spaces, etc

–  PC — Preconditioners
•  Knows how to apply a preconditioner
•  The context contains information on the preconditioner, such

as what routine to call to apply it

6

Linear Solvers in PETSc

•  Conjugate Gradient
•  GMRES
•  CG-Squared
•  Bi-CG-stab
•  Transpose-free QMR
•  etc.

•  Block Jacobi
•  Overlapping Additive

Schwarz
•  ICC, ILU (sequential only)
•  ILU(k), LU (direct solve,

sequential only)
•  Arbitrary matrix
•  etc.

Krylov Methods (KSP) Preconditioners (PC)

solvers:
linear beginner

7

Basic Linear Solver Code (C/C++)

KSP ksp; /* linear solver context */
Mat A; /* matrix */
Vec x, b; /* solution, RHS vectors */
int n, its; /* problem dimension, number of iterations */

MatCreate(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,&A);
MatSetFromOptions(A);
/* (code to assemble matrix not shown) */
VecCreate(PETSC_COMM_WORLD,&x);
VecSetSizes(x,PETSC_DECIDE, n);
VecSetFromOptions(x);
VecDuplicate(x,&b);
/* (code to assemble RHS vector not shown)*/

KSPCreate(PETSC_COMM_WORLD, &ksp);
KSPSetOperators(ksp, A, A, DIFFERENT_NONZERO_PATTERN);
KSPSetFromOptions(ksp);
KSPSolve(ksp, b, x);
KSPDestroy(ksp); solvers:

linear beginner

Indicate whether the preconditioner
has the same nonzero pattern as the
matrix each time a system is solved.
This default works with all
preconditioners. Other values (e.g.,
SAME_NONZERO_PATTERN)
can be used for particular
preconditioners. Ignored when
solving only one system

8

Basic Linear Solver Code (Fortran)
KPS ksp
Mat A
Vec x, b
integer n, its, ierr

call MatCreate(PETSC_COMM_WORLD,PETSC_DECIDE,n,n,A,ierr)
call MatSetFromOptions(A, ierr)
call VecCreate(PETSC_COMM_WORLD,x,ierr)
call VecSetSizes(x, PETSC_DECIDE, n, ierr)
call VecSetFromOptions(x, ierr)
call VecDuplicate(x,b,ierr)

call KSPCreate(PETSC_COMM_WORLD,ksp,ierr)
call KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN,ierr)
call KSPSetFromOptions(ksp,ierr)
call KSPSolve(ksp,b,x,ierr)
call KSPDestroy(ksp,ierr)

C then assemble matrix and right-hand-side vector

solvers:
linear beginner

9

Customization Options

•  Command Line Interface
– Applies same rule to all queries via a database
– Enables the user to have complete control at

runtime, with no extra coding
•  Procedural Interface

– Provides a great deal of control on a usage-by-
usage basis inside a single code

– Gives full flexibility inside an application
solvers:
linear beginner

10

•  -ksp_type [cg, gmres, bcgs, tfqmr,…]
•  -pc_type [lu, ilu, jacobi, sor, asm,…]

•  -ksp_max_it <max_iters>
•  -ksp_gmres_restart <restart>
•  -pc_asm_overlap <overlap>
•  -pc_asm_type [basic, restrict, interpolate, none]
•  etc ...

Setting Solver Options at Runtime

solvers:
linear beginner

1
intermediate

2

1

2

11

Linear Solvers: Monitoring Convergence

•  -ksp_monitor - Monitor preconditioned residual norm
•  -ksp_monitor_solution - Monitor solution graphically

•  -ksp_monitor_true_residual - Monitor true residual norm || b-Ax ||
•  -ksp_monitor_singular_value - Monitor singular values

•  User-defined monitors, using callbacks

solvers:
linear beginner

1
intermediate

2
advanced

3

1

2

3

12

Setting Solver Options within Code

–  KSPSetType(KSP ksp,KSPType type)
–  KSPSetTolerances(KSP ksp,PetscReal rtol,

PetscReal atol,PetscReal dtol, int maxits)
–  etc....

•  KSPGetPC(KSP ksp,PC *pc)
–  PCSetType(PC pc,PCType)
–  PCASMSetOverlap(PC pc,int overlap)
–  etc....

solvers:
linear beginner

13

Recursion: Specifying Solvers for Schwarz
Preconditioner Blocks

•  Specify KSP solvers and options with “-sub” prefix,
e.g.,
– Full or incomplete factorization

-sub_pc_type lu
-sub_pc_type ilu -sub_pc_ilu_levels <levels>

– Can also use inner Krylov iterations, e.g.,
-sub_ksp_type gmres -sub_ksp_rtol <rtol>
-sub_ksp_max_it <maxit>

solvers: linear:
preconditioners beginner

14

KSP: Review of Basic Usage

•  KSPCreate() - Create solver context
•  KSPSetOperators() - Set linear operators
•  KSPSetFromOptions() - Set runtime solver options

 for [KSP,PC]
•  KSPSolve() - Run linear solver
•  KSPView() - View solver options

 actually used at runtime
 (alternative: -ksp_view)

•  KSPDestroy() - Destroy solver

beginner
solvers:
linear

15

KSP: Review of Selected Preconditioner Options

solvers: linear:
preconditioners beginner

1
intermediate

2

1

2

16

Review of Selected Krylov Method Options

solvers: linear:
Krylov methods beginner

1
intermediate

2

1

2

17

Why Polymorphism?

•  Programs become independent of the choice of
algorithm

•  Consider the question:
–  What is the best combination of iterative method and

preconditioner for my problem?

•  How can you answer this experimentally?
–  Old way:

•  Edit code. Make. Run. Edit code. Make. Run. Debug. Edit. …

–  New way:…

18

KSP: Runtime Script Example

solvers:
linear intermediate

19

Viewing KSP Runtime Options

solvers:
linear intermediate

20

Providing Different Matrices to Define Linear
System and Preconditioner

•  Krylov method: Use A for matrix-vector products
•  Build preconditioner using either

–  A - matrix that defines linear system
–  or P - a different matrix (cheaper to assemble)

•  KSPSetOperators(KSP ksp,
–  Mat A,
–  Mat P,
–  MatStructure flag) solvers:

linear advanced

Precondition via: M A M (M x) = M b R L
-1

R
-1

L
-1

Solve Ax=b

21

Matrix-Free Solvers

•  Use “shell” matrix data structure
–  MatCreateShell(…, Mat *mfctx)

•  Define operations for use by Krylov methods
–  MatShellSetOperation(Mat mfctx,

•  MatOperation MATOP_MULT,
•  (void *) int (UserMult)(Mat, Vec, Vec))

•  Names of matrix operations defined in
 petsc/include/petscmat.h

•  Some defaults provided for nonlinear solver usage

advanced
solvers:
linear

