
1

Introduction to PETSc
(2)

2

Linear Algebra I

•  Vectors
– Has a direct interface to the values
– Supports all vector space operations

•  VecDot(), VecNorm(), VecScale()

– Also unusual ops, e.g. VecSqrt()
– Automatic communication during assembly
– Customizable communication (scatters)

Integration

3

Compressed
Sparse Row

(AIJ)

Blocked Compressed
Sparse Row

(BAIJ)

Block
Diagonal
(BDIAG)

Dense Other

Indices Block Indices Stride Other
Index Sets

Vectors

Line Search Trust Region

Newton-based Methods
Other

Nonlinear Solvers

Additive
Schwartz

Block
Jacobi Jacobi ILU ICC LU

(Sequential only) Others
Preconditioners

Euler Backward
Euler

Pseudo Time
Stepping Other

Time Steppers

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other
Krylov Subspace Methods

Matrices

PETSc Numerical Components

Distributed Arrays

Matrix-free

4

Vectors
•  What are PETSc vectors?

–  Fundamental objects for storing field solutions,
right-hand sides, etc.

–  Each process locally owns a subvector of
contiguously numbered global indices

•  Create vectors via
–  VecCreate(MPI_Comm comm,Vec *x)

•  comm - processes that share the vector
–  VecSetSizes(Vec x, int n, int N)

•  n: number of elements local to this process
•  N: total number of elements

–  VecSetType(Vec x,VecType type)
•  type: where VecType is: VEC_SEQ, VEC_MPI, or VEC_SHARED

–  VecSetFromOptions(Vec x)
•  lets you set the type at runtime

data objects:
vectors

proc 3

proc 2

proc 0

proc 4

proc 1

5

Creating a vector

Vec x; 
int N;  
… 
PetscInitialize(&argc,&argv,(char*)0,help); 
PetscOptionsGetInt(PETSC_NULL,"-n",&N,PETSC_NULL); 
…  
VecCreate(PETSC_COMM_WORLD,&x); 
VecSetSizes(x,PETSC_DECIDE,N); 
VecSetType(x,VEC_MPI); 
VecSetFromOptions(x); Global size

PETSc determines
local size

Use PETSc to get value
from command line

data objects:
vectors

6

How Can We Use a PETSc Vector
•  PETSc supports “data structure-neutral” objects

–  distributed memory “shared nothing” model
–  single processors and shared memory systems

•  PETSc vector is a “handle” to the real vector
–  Allows the vector to be distributed across many processes
–  To access the elements of the vector, we cannot simply do

 for (i=0; i<N; i++) v[i] = i;
–  We do not require that the programmer work only with the

“local” part of the vector; we permit operations, such as
setting an element of a vector, to be performed globally

•  Recall how data is stored in the distributed memory
programming model…

7

Distributed Memory Model

A(10)

A(10)

•  Integer A(10)
do i=1,10
 A(i) = i
enddo
...

Process 0 Process 1

Different Variables!

Address
Space

This A is completely different from this one

8

Vector Assembly
•  A three step process

1)  Each process tells PETSc what values to insert/add to a vector
component.

 VecSetValues(x, n, indices[], values[], mode);
•  n: number of entries to insert/add
•  indices[]: indices of entries
•  values[]: values to add
•  mode: [INSERT_VALUES, ADD_VALUES]

 Once all values provided
2) Begin communication between processes to ensure that values end

up where needed
VecAssemblyBegin(x);
•  allow other operations, such as some computation, to proceed

3) Complete the communication
VecAssemblyEnd(x);

data objects:
vectors

9

Parallel Matrix and Vector
Assembly

•  Processes may generate any entries in
vectors and matrices

•  Entries need not be generated on the process
on which they ultimately will be stored

•  PETSc automatically moves data during
the assembly process if necessary
–  e.g., ~petsc/src/vec/vec/examples/tutorials/ex2.c

data objects:
vectors

10

One Way to Set the Elements of A Vector

 VecGetSize(x,&N); /* Global size */ 
MPI_Comm_rank(PETSC_COMM_WORLD, &rank);

if (rank == 0) { 
 for (i=0; i<N; i++)
 VecSetValues(x,1,&i,&i,INSERT_VALUES); 
} 

 /* These two routines ensure that the data is distributed to the
other processes */ 
VecAssemblyBegin(x); 
VecAssemblyEnd(x);

Vector index

Vector value

data objects:
vectors

11

A Parallel Way to Set the Elements of a
Distributed Vector

 VecGetOwnershipRange(x,&low,&high);  
for (i=low; i<high; i++)
 VecSetValues(x,1,&i,&i,INSERT_VALUES);

/* These two routines must be called (in case some other process
contributed a value owned by another process) */ 
VecAssemblyBegin(x); 
VecAssemblyEnd(x);

data objects:
vectors

12

Selected Vector Operations

data objects:
vectors

13

A Complete PETSc Program
#include petscvec.h  
int main(int argc,char **argv) 
{
 PetscErrorCode ierr; 
 Vec x; 
 PetscInt n = 20; 
 PetscTruth flg; 
 PetscScalar one = 1.0, dot; 

 PetscInitialize(&argc,&argv,0,0); 
 PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL); 
 VecCreate(PETSC_COMM_WORLD,&x); 
 VecSetSizes(x,PETSC_DECIDE,n); 
 VecSetFromOptions(x); 
 VecSet(&one,x); 
 VecDot(x,x,&dot);  
 PetscPrintf(PETSC_COMM_WORLD,"Vector length %dn",(int)dot);  
 VecDestroy(x);  
 PetscFinalize(); 
 return 0; 
}

data objects:
vectors

14

Working With Local Vectors
•  It is sometimes more efficient to directly access the

storage for the local part of a PETSc Vec.
–  E.g., for finite difference computations involving elements

of the vector

•  PETSc allows you to access the local storage with
–  VecGetArray(Vec, double *[])

•  You must return the array to PETSc when you finish
–  VecRestoreArray(Vec, double *[])

•  Allows PETSc to handle data structure conversions
–  For most common uses, these routines are inexpensive and

do not involve a copy of the vector.
data objects:
vectors

15

Example of VecGetArray
Vec vec;
PetscScalar *array; 
…
VecCreate(PETSC_COMM_SELF,&vec); 
VecSetSizes(vec,PETSC_DECIDE,N); 
VecSetFromOptions(vec); 

VecGetArray(vec,&array);

/* compute with array directly, e.g., */
PetscPrintf(PETSC_COMM_WORLD, 
 “First element of local array of vec in each process is %f\n”, array[0]);

VecRestoreArray(vec,&array); data objects:
vectors

16

Indexing

•  Non-trivial in parallel
•  PETSc IS object, generalization of

–  {0,3,56,9}
–  1:4:55
–  Indexing by block

17

Linear Algebra II

•  Matrices
– Must use MatSetValues()

•  Automatic communication
– Supports many data types

•  AIJ, Block AIJ, Symmetric AIJ, Block Diagonal, etc.
– Supports structures for many packages

•  Spooles, MUMPS, SuperLU, UMFPack, DSCPack

Integration

18

Matrices
•  What are PETSc matrices?

–  Fundamental objects for storing linear operators (e.g., Jacobians)
•  Create matrices via

–  MatCreate(comm, &mat)
•  MPI_Comm - processes that share the matrix

–  MatSetSizes(mat,PETSC_DECIDE,PETSC_DECIDE,M,N)
•  number of local/global rows and columns

–  MatSetType(Mat, MatType)
•  where MatType is one of

–  default sparse AIJ: MPIAIJ, SEQAIJ
–  block sparse AIJ (for multi-component PDEs): MPIAIJ, SEQAIJ
–  symmetric block sparse AIJ: MPISBAIJ, SAEQSBAIJ
–  block diagonal: MPIBDIAG, SEQBDIAG
–  dense: MPIDENSE, SEQDENSE
–  matrix-free
–  etc (see ~petsc/src/mat/impls/)

–  MatSetFromOptions(Mat)
•  lets you set the MatType at runtime.

data objects:
matrices

19

Matrices and Polymorphism
•  Single user interface, e.g.,

–  Matrix assembly
•  MatSetValues()

–  Matrix-vector multiplication
•  MatMult()

–  Matrix viewing
•  MatView()

•  Multiple underlying implementations
–  AIJ, block AIJ, symmetric block AIJ, block diagonal,

dense, matrix-free, etc.
•  A matrix is defined by its interface, the operations

that you can perform with it.
–  Not by its data structure data objects:

matrices

20

Matrix Assembly
•  Same form as for PETSc Vectors:

1) MatSetValues(mat, m, idxm[], n, idxn[], v[], mode)
–  m: number of rows to insert/add
–  idxm[]: indices of rows and columns
–  n: number of columns to insert/add
–  v[]: values to add
–  mode: [INSERT_VALUES,ADD_VALUES]

2) MatAssemblyBegin(mat, type)

3) MatAssemblyEnd(mat, type)

data objects:
matrices

21

Matrix Assembly Example

Mat A;
int column[3], i;
double value[3];
…
MatCreate(PETSC_COMM_WORLD, 
 PETSC_DECIDE,PETSC_DECIDE, N,N,&A); 

MatSetFromOptions(A); 
/* mesh interior */
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
if (rank == 0) { /* Only one process creates matrix entries */
 for (i=1; i<N-2; i++) {
 column[0] = i-1; column[1] = i; column[2] = i+1;
 MatSetValues(A,1,&i,3,column,value,INSERT_VALUES);
 }
}
/* also must set boundary points (code for global row 0 and N-1 omitted) */
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

simple 3-point stencil for 1D discretization

data objects:
matrices

Choose the global
size of the matrix

Let PETSc decide how
to allocate matrix
across processes

22

Parallel Matrix Distribution

MatGetOwnershipRange(Mat A, int *rstart, int *rend)
–  rstart: first locally owned row of global matrix
–  rend -1: last locally owned row of global matrix

Each process locally owns a submatrix of contiguously
numbered global rows.

proc 0

proc 3: locally owned rows proc 3
proc 2
proc 1

proc 4

data objects:
matrices

23

Matrix Assembly Example With
Parallel Assembly

Mat A;
int column[3], i, start, end,istart,iend;
double value[3];
…
MatCreate(PETSC_COMM_WORLD, 
 PETSC_DECIDE,PETSC_DECIDE,n,n,&A); 

MatSetFromOptions(A); 
MatGetOwnershipRange(A,&start,&end);  
/* mesh interior */
istart = start; if (start == 0) istart = 1;
iend = end; if (iend == n-1) iend = n-2;
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;
for (i=istart; i<iend; i++) { /* each processor generates some of the matrix values */
 column[0] = i-1; column[1] = i; column[2] = i+1;
 MatSetValues(A,1,&i,3,column,value,INSERT_VALUES);
}
/* also must set boundary points (code for global row 0 and n-1 omitted) */
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

simple 3-point stencil for 1D discretization

data objects:
matrices

24

Why Are PETSc Matrices The Way They Are?

•  No one data structure is appropriate for all problems
–  Blocked and diagonal formats provide significant performance benefits
–  PETSc provides a large selection of formats and makes it (relatively) easy to

extend PETSc by adding new data structures

•  Matrix assembly is difficult enough without being forced to worry
about data partitioning
–  PETSc provides parallel assembly routines
–  Achieving high performance still requires making most operations local to a

process but programs can be incrementally developed.

•  Matrix decomposition by consecutive rows across processes, for
sparse matrices, is simple and makes it easier to work with other
codes.
–  For applications with other ordering needs, PETSc provides “Application

Orderings” (AO).

25

Blocking: Performance Benefits

•  3D compressible
Euler code

•  Block size 5
•  IBM Power2

data objects:
matrices

More issues discussed in full tutorials available via PETSc web site.

