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Linear Algebra I 

•  Vectors 
– Has a direct interface to the values 
– Supports all vector space operations 

•  VecDot(), VecNorm(), VecScale() 

– Also unusual ops, e.g. VecSqrt() 
– Automatic communication during assembly 
– Customizable communication (scatters) 

Integration 
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Vectors 
•  What are PETSc vectors? 

–  Fundamental objects for storing field solutions, 
right-hand sides, etc. 

–  Each process locally owns a subvector of 
contiguously numbered global indices 

•  Create vectors via 
–  VecCreate(MPI_Comm comm,Vec *x ) 

•  comm - processes that share the vector 
–  VecSetSizes( Vec x, int n, int N ) 

•  n: number of elements local to this process 
•  N: total number of elements  

–  VecSetType(Vec x,VecType type) 
•  type: where VecType is: VEC_SEQ, VEC_MPI, or VEC_SHARED 

–  VecSetFromOptions(Vec x)  
•  lets you set the type at runtime 

data objects: 
vectors 

proc 3 

proc 2 

proc 0 

proc 4 

proc 1 
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Creating a vector 

Vec x; 
int N;  
… 
PetscInitialize(&argc,&argv,(char*)0,help); 
PetscOptionsGetInt(PETSC_NULL,"-n",&N,PETSC_NULL); 
…  
VecCreate(PETSC_COMM_WORLD,&x); 
VecSetSizes(x,PETSC_DECIDE,N); 
VecSetType(x,VEC_MPI); 
VecSetFromOptions(x);  Global size 

PETSc determines 
local size 

Use PETSc to get value 
from command line  

data objects: 
vectors 
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How Can We Use a PETSc Vector 
•  PETSc supports “data structure-neutral” objects 

–  distributed memory “shared nothing” model 
–  single processors and shared memory systems 

•  PETSc vector is a “handle” to the real vector 
–  Allows the vector to be distributed across many processes 
–  To access the elements of the vector, we cannot simply do 

    for (i=0; i<N; i++) v[i] = i; 
–  We do not require that the programmer work only with the 

“local” part of the vector; we permit operations, such as 
setting an element of a vector, to be performed globally 

•  Recall how data is stored in the distributed memory 
programming model… 
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Distributed Memory Model 

A(10) 

A(10) 

•  Integer A(10) 
do i=1,10 
  A(i) = i 
enddo 
... 

Process 0 Process 1 

Different Variables! 

Address 
Space 

This A is completely different from this one 
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Vector Assembly 
•  A three step process 

1)  Each process tells PETSc what values to insert/add to a vector 
component.   

 VecSetValues(x, n, indices[], values[], mode); 
•  n: number of entries to insert/add 
•  indices[]: indices of entries 
•  values[]: values to add 
•  mode: [INSERT_VALUES, ADD_VALUES] 

 Once all values provided 
2) Begin communication between processes to ensure that values end 

up where needed 
VecAssemblyBegin(x); 
•  allow other operations, such as some computation, to proceed 

3) Complete the communication 
VecAssemblyEnd(x); 

data objects: 
vectors 
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Parallel Matrix and Vector 
Assembly 

•  Processes may generate any entries in 
vectors and matrices 

•  Entries need not be generated on the process 
on which they ultimately will be stored 

•  PETSc automatically moves data during 
the assembly process if necessary 
–  e.g., ~petsc/src/vec/vec/examples/tutorials/ex2.c 

data objects: 
vectors 
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One Way to Set the Elements of A Vector  

   VecGetSize(x,&N);  /* Global size */ 
MPI_Comm_rank(PETSC_COMM_WORLD, &rank); 

if (rank == 0) { 
    for (i=0; i<N; i++)         
  VecSetValues(x,1,&i,&i,INSERT_VALUES); 
} 

 /* These two routines ensure that the data is distributed to the 
other processes */ 
VecAssemblyBegin(x); 
VecAssemblyEnd(x); 

Vector index 

Vector value 

data objects: 
vectors 
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A Parallel Way to Set the Elements of a 
Distributed Vector  

   VecGetOwnershipRange(x,&low,&high);  
for (i=low; i<high; i++)           
 VecSetValues(x,1,&i,&i,INSERT_VALUES); 

/* These two routines must be called (in case some other process 
contributed a value owned by another process) */ 
VecAssemblyBegin(x); 
VecAssemblyEnd(x); 

data objects: 
vectors 
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Selected Vector Operations 

data objects: 
vectors 
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A Complete PETSc Program 
#include petscvec.h  
int main(int argc,char **argv) 
{ 
  PetscErrorCode ierr; 
  Vec                    x; 
  PetscInt             n = 20; 
  PetscTruth         flg; 
  PetscScalar       one = 1.0, dot; 

  PetscInitialize(&argc,&argv,0,0); 
  PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL); 
  VecCreate(PETSC_COMM_WORLD,&x); 
  VecSetSizes(x,PETSC_DECIDE,n); 
  VecSetFromOptions(x); 
  VecSet(&one,x); 
  VecDot(x,x,&dot);  
  PetscPrintf(PETSC_COMM_WORLD,"Vector length %dn",(int)dot);  
  VecDestroy(x);  
  PetscFinalize(); 
  return 0; 
}  

data objects: 
vectors 
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Working With Local Vectors 
•  It is sometimes more efficient to directly access the 

storage for the local part of a PETSc Vec. 
–  E.g., for finite difference computations involving elements 

of the vector 

•  PETSc allows you to access the local storage with 
–  VecGetArray(Vec, double *[ ]) 

•  You must return the array to PETSc when you finish 
–  VecRestoreArray(Vec, double *[ ]) 

•  Allows PETSc to handle data structure conversions 
–  For most common uses, these routines are inexpensive and 

do not involve a copy of the vector. 
data objects: 
vectors 
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Example of VecGetArray 
Vec               vec; 
PetscScalar  *array; 
… 
VecCreate(PETSC_COMM_SELF,&vec); 
VecSetSizes(vec,PETSC_DECIDE,N); 
VecSetFromOptions(vec); 

VecGetArray(vec,&array); 

/* compute with array directly, e.g., */ 
PetscPrintf(PETSC_COMM_WORLD, 
 “First element of local array of vec in each process is %f\n”, array[0] ); 

VecRestoreArray(vec,&array);  data objects: 
vectors 
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Indexing 

•  Non-trivial in parallel 
•  PETSc IS object, generalization of 

–  {0,3,56,9} 
–  1:4:55 
–  Indexing by block 
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Linear Algebra II 

•  Matrices 
– Must use MatSetValues() 

•  Automatic communication 
– Supports many data types 

•  AIJ, Block AIJ, Symmetric AIJ, Block Diagonal, etc. 
– Supports structures for many packages 

•  Spooles, MUMPS, SuperLU, UMFPack, DSCPack 

Integration 
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Matrices 
•  What are PETSc matrices? 

–  Fundamental objects for storing linear operators (e.g., Jacobians) 
•  Create matrices via 

–  MatCreate(comm, &mat)  
•  MPI_Comm - processes that share the matrix 

–  MatSetSizes(mat,PETSC_DECIDE,PETSC_DECIDE,M,N) 
•  number of local/global rows and columns 

–  MatSetType(Mat, MatType) 
•  where MatType is one of 

–  default sparse AIJ: MPIAIJ, SEQAIJ 
–  block sparse AIJ (for multi-component PDEs): MPIAIJ, SEQAIJ 
–  symmetric block sparse AIJ: MPISBAIJ, SAEQSBAIJ 
–  block diagonal: MPIBDIAG, SEQBDIAG 
–  dense: MPIDENSE, SEQDENSE 
–  matrix-free 
–  etc (see ~petsc/src/mat/impls/) 

–  MatSetFromOptions(Mat)  
•  lets you set the MatType at runtime. 

data objects: 
matrices 
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Matrices and Polymorphism 
•  Single user interface, e.g., 

–  Matrix assembly 
•  MatSetValues() 

–  Matrix-vector multiplication 
•  MatMult() 

–  Matrix viewing 
•  MatView() 

•  Multiple underlying implementations 
–  AIJ, block AIJ, symmetric block AIJ, block diagonal, 

dense, matrix-free, etc. 
•  A matrix is defined by its interface, the operations 

that you can perform with it. 
–  Not by its data structure data objects: 

matrices 
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Matrix Assembly 
•  Same form as for PETSc Vectors: 

1) MatSetValues(mat, m, idxm[], n, idxn[], v[], mode) 
–  m: number of rows to insert/add 
–  idxm[]: indices of rows and columns 
–  n: number of columns to insert/add 
–  v[]: values to add 
–  mode: [INSERT_VALUES,ADD_VALUES] 

2) MatAssemblyBegin(mat, type) 

3) MatAssemblyEnd(mat, type) 

data objects: 
matrices 



21 

Matrix Assembly Example 

Mat      A; 
int        column[3], i; 
double value[3]; 
… 
MatCreate(PETSC_COMM_WORLD, 
            PETSC_DECIDE,PETSC_DECIDE,  N,N,&A); 

MatSetFromOptions(A); 
/* mesh interior */ 
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0; 
if (rank == 0) {  /* Only one process creates matrix entries */ 
    for (i=1; i<N-2; i++) { 
        column[0] = i-1; column[1] = i; column[2] = i+1; 
        MatSetValues(A,1,&i,3,column,value,INSERT_VALUES); 
    } 
} 
/* also must set boundary points  (code for global row 0 and N-1 omitted) */ 
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY); 
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY); 

simple 3-point stencil for 1D discretization 

data objects: 
matrices 

Choose the global 
size of the matrix 

Let PETSc decide how 
to allocate matrix 
across processes 
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Parallel Matrix Distribution 

MatGetOwnershipRange(Mat A, int *rstart, int *rend) 
–  rstart:   first locally owned row of global matrix 
–  rend -1:  last locally owned row of global matrix 

Each process locally owns a submatrix of contiguously 
numbered global rows. 

proc 0 

proc 3: locally owned rows proc 3 
proc 2 
proc 1 

proc 4 

data objects: 
matrices 
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Matrix Assembly Example With 
Parallel Assembly 

Mat      A; 
int        column[3], i, start, end,istart,iend; 
double value[3]; 
… 
MatCreate(PETSC_COMM_WORLD, 
                  PETSC_DECIDE,PETSC_DECIDE,n,n,&A); 

MatSetFromOptions(A); 
MatGetOwnershipRange(A,&start,&end);   
/* mesh interior */ 
istart = start; if (start == 0) istart = 1; 
iend = end; if (iend == n-1) iend = n-2; 
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0; 
for (i=istart; i<iend; i++) { /* each processor generates some of the matrix values */ 
    column[0] = i-1; column[1] = i; column[2] = i+1; 
    MatSetValues(A,1,&i,3,column,value,INSERT_VALUES); 
} 
/* also must set boundary points  (code for global row 0 and n-1 omitted) */ 
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY); 
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY); 

simple 3-point stencil for 1D discretization 

data objects: 
matrices 
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Why Are PETSc Matrices The Way They Are? 

•  No one data structure is appropriate for all problems 
–  Blocked and diagonal formats provide significant performance benefits 
–  PETSc provides a large selection of formats and makes it (relatively) easy to 

extend PETSc by adding new data structures 

•  Matrix assembly is difficult enough without being forced to worry 
about data partitioning 
–  PETSc provides parallel assembly routines 
–  Achieving high performance still requires making most operations local to a 

process but programs can be incrementally developed. 

•  Matrix decomposition by consecutive rows across processes, for 
sparse matrices, is simple and makes it easier to work with other 
codes. 
–  For applications with other ordering needs, PETSc provides “Application 

Orderings” (AO). 
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Blocking: Performance Benefits 

•  3D compressible 
Euler code 

•  Block size 5 
•  IBM Power2 

data objects: 
matrices 

More issues discussed in full tutorials available via PETSc web site. 


