
Introduction to MPI 

Fall 2010 

H. Zhang 1 CS595 



2 

Types of programming models 
  Shared Memory 

–  Global memory space 
  Data Parallel 

–  Shared or Distributed memory splitting a larger data structure 
  Message Passing 

–  MPI, PVM, libraries using message passing 
  Threads 

–  One process, one memory space, multiple threads 
  Hybrid 

–  Ex: Threads and Message Passing 

  Above models are NOT specific to a particular type of machine or memory 
architecture 
–  can (theoretically) be implemented on any underlying hardware.  



3 

Message Passing Model  

  In the message passing model, each 
process has its own memory, and 
messages are sent between 
processes to exchange data over a 
network. 

  Tasks exchange data through 
communications by sending and 
receiving messages.  

  Data transfer usually requires 
cooperative operations to be 
performed by each process. For 
example, a send operation must have 
a matching receive operation.  

  Suitable mainly for SPMD/MIMD 
machines 

P0 P1 Pn 
… 

M0 M1 Mn 

Network 



H. Zhang CS595 4 

Outline 

  Background of MPI 
  Overview of MPI functions  
  Point-to-point communication 
  Collective communication 



H. Zhang CS595 5 

What?: Message Passing Interface 
  A message-passing library specification 

 - extended message-passing model 
 - not a language or compiler specification 
 - not a specific implementation or product 

  Standards (NOT implementation) 

  Designed for high performance on both massively parallel 
machines and on workstation clusters. 

  Is widely available, with both free available (e.g., MPICH, 
Open MPI) and vendor-supplied implementations 

  Was developed by a broadly based vendors, 
implementors and users 



H. Zhang CS595 6 

Who? MPI Forum 
  Early vendor systems were not portable  
  Early portable systems (PVM etc) were mainly research 

efforts 
  Did not address the full spectrum of issues 
  Lacked vendor support 
  Were not implemented at the most efficient level 

  When? (1992) – 1994 – Now  
  MPI 1.0, MPI 1.2, MPI 2 
  The MPI Forum organized in 1992 with broad participation 

by 
  Vendors: IBM, Intel, TMC, SGI, Convex, Meiko 
  Portability library writers: PVM, p4 
  Users: application scientists and library writers 



H. Zhang CS595 7 

How? 

  A set of processes communicate by send/recv msgs 

  Each process computes its local data 

More Features: 
  Communicators encapsulate communication spaces for 

library safety 

  Datatypes reduce copying costs and permit heterogeneity 

  Multiple communication modes allow precise buffer 
management 

  Collective operations for scalable global communications 

  … 



H. Zhang CS595 8 

Why? 
Portability; Efficiency; Functionality 
  Goal of large-scale scientific computing: 

 - deliver computing performance to applications 
  Deliverable computing power (in flops): 

 - Pflops 
  Independent research projects contribute new 

ideas to programming modes, languages, and 
libraries 

  Most make a prototype available and encourage use by 
others 

  Users require commitment, support, portability 
  Not all research groups can provide this 

  Failure to achieve critical mass of users can limit 
impact of research 



H. Zhang CS595 9 

Where? 

  The Standard itself: 
 http://www.mpi-forum.org 

  Info: 
http://www.mcs.anl.gov/mpi 

  Implementations: 
  MPICH: http://www.mcs.anl.gov/mpi/mpich 
  Open MPI: http://www.open-mpi.org/ 



H. Zhang CS595 10 

  MPI implementations 
  MPICH:  

MPICH2, MPICH-GM, MPICH-G2, MPICH-VMI,  
         MPICH for Windows 

  LAM/MPI 
  Open MPI (combine FT-MPI, LAM/MPI etc) 

  Programming languages 
  Fortran 
  C 
  C++ 
  Others: Python 



H. Zhang CS595 11 

Programming With MPI 
  MPI is a library 

  All operations are performed with routine calls 
  Basic definitions in  

  mpi.h for C 
  mpif.h for Fortran 77 and 90 
  MPI module for Fortran 90 (optional) 

  First Program: 
  Create 3 processes in a simple MPI job 
  Write out process number  



H. Zhang CS595 12 

Example:   ~mpich2-1.0.7/examples/hellow.c 
#include <stdio.h> 
#include "mpi.h" 

int main( int argc, char *argv[] ) 
{ 
    int rank; 
    int size; 

    MPI_Init( 0, 0 ); 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
    MPI_Comm_size(MPI_COMM_WORLD, &size); 
    printf( "Hello world from process %d of %d\n", rank, size ); 
    MPI_Finalize(); 
    return 0; 
} 



H. Zhang CS595 13 

Finding Out About the Environment 

  Two important questions that arise early in a parallel 
program are: 
  How many processes are participating in this 

computation? 
  Which one am I? 

  MPI provides functions to answer these questions: 
  MPI_Comm_size reports the number of processes. 
  MPI_Comm_rank reports the rank, a number 

between 0 and size-1, identifying the calling process 



H. Zhang CS595 14 

Program Basis 
  #include “mpi.h” 
  How to compile 

  mpicc –o <program_name> <src1> <src2> … 
  e.g. mpicc –o hellow hellow.c 

  How to run (on a single machine) 
  mpiexec –n <proc_num> <program>  

  e.g. mpiexec –n 3 ./hellow 



H. Zhang CS595 15 

Basic concepts 
  Process can be collected into groups 

  Each message is sent in a context, and must be 
received in the same context 

  A group and context together form a communicator  

  A process is identified by its rank in the group 
associated with a communicator 

  There is a default communicator whose group 
contains all initial processes, called 
MPI_COMM_WORLD 



H. Zhang CS595 16 

Basic concepts 
  MPI datatype 

  Predefined:  
MPI_INT, MPI_FLOAT, MPI_DOUBLE  

  User-defined 

  Point-to-point message passing 
  Message tag 

  Collective message passing 
  One-to-all, all-to-one, all-to-all 



H. Zhang CS595 17 

MPI functions overview:  
  more than 125 functions 

MPI is simple:  
 many parallel programs can be written using just 
these six functions, only two of which are non-trivial: 

  MPI_Init:              initiate a MPI computation 
  MPI_Finalize:        terminate an MPI computation 
  MPI_Comm_Size:  determine number of processes 
  MPI_Comm_Rank: determine my process id 

  MPI_Send: send a message 
  MPI_Recv: receive a message 



H. Zhang CS595 18 

MPI functions overview:  
  more than 125 functions 

MPI is simple:  
 alternative set of 6 functions: 

  MPI_Init:              initiate a MPI computation 
  MPI_Finalize:        terminate an MPI computation 
  MPI_Comm_Size:  determine number of processes 
  MPI_Comm_Rank: determine my process id 

  MPI_BCAST:   broadcast a message to all processes 
  MPI_REDUCE: reduce values on all processes to a  

       single value 



H. Zhang CS595 19 

Basic functions 

  int MPI_Init(int *argc, char ***argv)  
  int MPI_Finalize()  

  int MPI_Comm_size ( MPI_Comm comm, int *size ) 
  ret = MPI_Comm_size(MPI_COMM_WORLD, &size); 

  int MPI_Comm_rank ( MPI_Comm comm, int *rank ) 
  ret = MPI_Comm_rank(MPI_COMM_WORLD, &rank);  

  int MPI_Barrier ( MPI_Comm comm ) 
  ret = MPI_Barrier(MPI_COMM_WORLD);  



H. Zhang CS595 20 

Point-to-point communication 

  Blocking message passing 
  int MPI_Send(void *buf, int count, MPI_Datatype datatype,    

       int dest, int tag, MPI_Comm comm) 

  int MPI_Recv(void *buf, int count, MPI_Datatype datatype,  
            int source, int tag, MPI_Comm comm, MPI_Status *status) 

  Non-blocking message passing 
  int MPI_Isend(void *buf, int count, MPI_Datatype datatype,  

   int dest, int tag, MPI_Comm comm, MPI_Request *request) 

  int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,  
   int source, int tag, MPI_Comm comm, MPI_Request *request) 

  int MPI_Wait (MPI_Request  *request, MPI_Status  *status) 



H. Zhang CS595 21 

MPI Basic Send/Receive 

  We need to fill in the details in 

  Things that need specifying: 
  How will “data” be described? 
  How will processes be identified? 
  How will the receiver recognize/screen messages? 
  What will it mean for these operations to complete? 

Process 0 Process 1 

Send(data) 
Receive(data) 



H. Zhang CS595 22 

MPI Tags 

  Messages are sent with an accompanying user-
defined integer tag, to assist the receiving 
process in identifying the message. 

  Messages can be screened at the receiving end 
by specifying a specific tag, or not screened by 
specifying MPI_ANY_TAG as the tag in a receive. 

  Some non-MPI message-passing systems have 
called tags “message types”.  MPI calls them 
tags to avoid confusion with datatypes. 



H. Zhang CS595 23 

MPI Basic (Blocking) Send 

MPI_SEND (sbuf, count, datatype, dest, tag, comm) 

  The message buffer is described by (buf, count, 
datatype). 

  The target process is specified by dest, which is the rank 
of the target process in the communicator specified by 
comm. 

  When this function returns, the data has been delivered to 
the system and the buffer can be reused.  The message 
may not have been received by the target process. 



H. Zhang CS595 24 

MPI Basic (Blocking) Receive 
MPI_RECV(rbuf, count, datatype, source, tag, comm, status) 

  Waits until a matching (on source and tag) message is 
received from the system, and the buffer can be used. 

  source is rank in communicator specified by comm, or 
MPI_ANY_SOURCE. 

  status contains further information 

  Receiving fewer than count occurrences of datatype is 
OK, but receiving more is an error. 



H. Zhang CS595 25 

Send-Receive Summary 

  Send to matching Receive 

  Datatype 
  Basic for heterogeneity 
  Derived for non-contiguous 

  Contexts 
  Message safety for libraries 

  Buffering 
  Robustness and correctness 

A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … ) 



H. Zhang CS595 26 

Retrieving Further Information 
  Status is a data structure allocated in the user’s program. 
  In C: 

int recvd_tag, recvd_from, recvd_count; 
MPI_Status status; 
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status ) 
recvd_tag  = status.MPI_TAG; 
recvd_from = status.MPI_SOURCE; 
MPI_Get_count( &status, datatype, &recvd_count ); 

  In Fortran: 
integer recvd_tag, recvd_from, recvd_count 
integer status(MPI_STATUS_SIZE) 
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. 

status, ierr) 
tag_recvd  = status(MPI_TAG) 
recvd_from = status(MPI_SOURCE) 
call MPI_GET_COUNT(status, datatype, recvd_count, ierr) 



H. Zhang CS595 27 

Tags and Contexts 

  Separation of messages used to be accomplished by use 
of tags, but 
  this requires libraries to be aware of tags used by 

other libraries. 
  this can be defeated by use of “wild card” tags. 

  Contexts are different from tags 
  no wild cards allowed 
  allocated dynamically by the system when a library 

sets up a communicator for its own use. 
  User-defined tags still provided in MPI for user 

convenience in organizing application 



H. Zhang CS595 28 

Collective Operations in MPI 
  Collective operations are called by all processes in a 

communicator. 

  MPI_BCAST  
 distributes data from one process (the root) to all others in 
a communicator. 

  MPI_REDUCE  
 combines data from all processes in communicator and 
returns it to one process. 

  In many numerical algorithms, SEND/RECEIVE can be 
replaced by BCAST/REDUCE, improving both simplicity and 
efficiency. But not always…  



H. Zhang CS595 29 

MPI Collective Communication 

  Communication and computation is coordinated among a 
group of processes in a communicator. 

  Groups and communicators can be constructed “by hand” 
or using MPI’s topology routines. 

  Tags are not used; different communicators deliver 
similar functionality. 

  No non-blocking collective operations. 
  Three classes of operations: 

  synchronization,  
  data movement,  
  collective computation. 



H. Zhang CS595 30 

Synchronization 

  MPI_Barrier( comm ) 

  Blocks until all processes in the group of 
the communicator comm call it. 



H. Zhang CS595 31 

Collective Data Movement 

A 
B 

D 
C 

B C D 

A 
A 

A 
A 

Broadcast 

Scatter 

Gather 

A 

A 

P0 
P1 

P2 

P3 

P0 
P1 

P2 

P3 



H. Zhang CS595 32 

More Collective Data Movement 

A 
B 

D 
C 

A0 B0 C0 D0 

A1 B1 C1 D1 

A3 B3 C3 D3 

A2 B2 C2 D2 

A0 A1 A2 A3 
B0 B1 B2 B3 

D0 D1 D2 D3 

C0 C1 C2 C3 

A B C D 
A B C D 

A B C D 
A B C D 

Allgather 

Alltoall 

P0 
P1 

P2 

P3 

P0 
P1 

P2 

P3 



H. Zhang CS595 33 

Collective Computation 

P0 
P1 

P2 

P3 

P0 
P1 

P2 

P3 

A 
B 

C 
C 

A 
B 

D 
C 

ABCD 

A 
AB 

ABC 
ABCD 

Reduce 

Scan 



H. Zhang CS595 34 

MPI Collective Routines 

  Many Routines:   

 Allgather, Allgatherv, Allreduce, 
Alltoall, Alltoallv, Bcast, Gather, 
Gatherv, Reduce, ReduceScatter, Scan, 
Scatter, Scatterv 

  All versions deliver results to all participating 
processes. 

  V versions allow the hunks to have different sizes. 

  Allreduce, Reduce, ReduceScatter, and Scan 
take both built-in and user-defined functions. 



H. Zhang CS595 35 

MPI Built-in Collective Computation Operations 

  MPI_Max 
  MPI_Min 
  MPI_Prod 
  MPI_Sum 
  MPI_Land 
  MPI_Lor 
  MPI_Lxor 
  MPI_Band 
  MPI_Bor 
  MPI_Bxor 
  MPI_Maxloc 
  MPI_Minloc 

Maximum 
Minimum 
Product 
Sum 
Logical and 
Logical or 
Logical exclusive or 
Binary and 
Binary or 
Binary exclusive or 
Maximum and location 
Minimum and location 



H. Zhang CS595 36 

Collective communication 

  Involves coordinated communication within a group of 
processes 

  All collective routines block until they are locally complete 

  int MPI_Bcast ( void *buffer, int count, MPI_Datatype datatype, int 
      root, MPI_Comm comm ) 

  int MPI_Scatter ( void *sendbuf, int sendcnt, MPI_Datatype  
      sendtype, void *recvbuf, int recvcnt, MPI_Datatype 
      recvtype, int root, MPI_Comm comm )  

  int MPI_Gather ( void *sendbuf, int sendcnt, MPI_Datatype  
      sendtype, void *recvbuf, int recvcount,  
      MPI_Datatype recvtype, int root, MPI_Comm comm )  



37 

Example: Calculating Pi 

1 

4 
  One way to calculate Pi: 

  Calculating Pi via numerical 
integration 
  Divide interval up into 

subintervals 
  Assign subintervals to processes 
  Each process calculates partial 

sum 
  Add all the partial sums together 

to get Pi 

0 



38 

Example:  PI in C (1/2) 
#include "mpi.h" 
#include <math.h> 
int main(int argc, char *argv[]) 
{ 

int done = 0, n, myid, numprocs, i, rc; 
double PI25DT = 3.141592653589793238462643; 
double mypi, pi, width, sum, x, a; 
MPI_Init(&argc,&argv); 
MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
while (!done) { 
  if (myid == 0) { 
    printf("Enter the number of intervals: (0 quits) "); 
    scanf("%d",&n); 
  } 

   MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
  if (n == 0) break; 

root process 
input/output data 



39 

Example:  PI in C (2/2)  
     width = 1.0 / (double) n; 

  sum = 0.0; 
  for (i = myid + 1; i <= n; i += numprocs) { 
    x = width * ((double)i - 0.5); 
    sum += 4.0 / (1.0 + x*x); 
  } 
  mypi = width * sum; 

   MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 
             MPI_COMM_WORLD); 
  if (myid == 0) 
    printf("pi is approximately %.16f, Error is %.16f\n", 
            pi, fabs(pi - PI25DT)); 
} 
MPI_Finalize(); 

 return 0; 
} 

output data 

operation 

root process 

input location 



H. Zhang CS595 40 

Examples 

void main(int argc, char **argv) { 
     int msg[100];  
     int tag = 1; 
     … 

 MPI_Init(&argc, &argv);   
 MPI_Comm_size(MPI_COMM_WORLD, &size);  

     MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
     … 

 if (rank == 0 ) { 
   MPI_Send(msg, msgsize, MPI_INT, 1, tag, MPI_COMM_WORLD) 
 } else if (rank == 1) { 
   MPI_Recv(msg, msgsize, MPI_INT, 0, tag, MPI_COMM_WORLD, &status); 
 } 
 MPI_Bcast(msg, msgsize, MPI_INT, 0, MPI_COMM_WORLD); 

 MPI_Finalize(); 
} 



H. Zhang CS595 41 

Summary: Using MPI 

  The Message Passing Interface is: 
  a library for parallel communication 
  a system for launching parallel jobs (mpirun/mpiexec) 
  a community standard 

  Launching jobs is easy 
  mpiexec -n 3 ./hellow 

  You should never have to make MPI calls when using 
PETSc 
  Almost never 



H. Zhang CS595 42 

Summary: MPI Concepts 
  Communicator 

  A context (or scope) for parallel communication (“Who can I talk to") 
  There are two defaults: 

  yourself (MPI_COMM_SELF), 
  and everyone launched (MPI_COMM_WORLD) 

  Can create new communicators by splitting existing ones 

  Point-to-point communication 
  Happens between two processes (e.g.,  MatMult()) 

  Reduction or scan operations 
  Happens among all processes (e.g., VecDot()) 



H. Zhang CS595 43 

Homework 2 

1. Install MPI and PETSc 
2. Test the installation of MPI 
3. Test the installation of PETSc 
4. Read Numerical Linear Algebra, by Trefethen and Bau:  

 Lecture 1: Matrix-Vector Multiplication 


