
Introduction to MPI 

Fall 2010 

H. Zhang 1 CS595 



2 

Types of programming models 
  Shared Memory 

–  Global memory space 
  Data Parallel 

–  Shared or Distributed memory splitting a larger data structure 
  Message Passing 

–  MPI, PVM, libraries using message passing 
  Threads 

–  One process, one memory space, multiple threads 
  Hybrid 

–  Ex: Threads and Message Passing 

  Above models are NOT specific to a particular type of machine or memory 
architecture 
–  can (theoretically) be implemented on any underlying hardware.  
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Message Passing Model  

  In the message passing model, each 
process has its own memory, and 
messages are sent between 
processes to exchange data over a 
network. 

  Tasks exchange data through 
communications by sending and 
receiving messages.  

  Data transfer usually requires 
cooperative operations to be 
performed by each process. For 
example, a send operation must have 
a matching receive operation.  

  Suitable mainly for SPMD/MIMD 
machines 

P0 P1 Pn 
… 

M0 M1 Mn 

Network 
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Outline 

  Background of MPI 
  Overview of MPI functions  
  Point-to-point communication 
  Collective communication 
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What?: Message Passing Interface 
  A message-passing library specification 

 - extended message-passing model 
 - not a language or compiler specification 
 - not a specific implementation or product 

  Standards (NOT implementation) 

  Designed for high performance on both massively parallel 
machines and on workstation clusters. 

  Is widely available, with both free available (e.g., MPICH, 
Open MPI) and vendor-supplied implementations 

  Was developed by a broadly based vendors, 
implementors and users 
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Who? MPI Forum 
  Early vendor systems were not portable  
  Early portable systems (PVM etc) were mainly research 

efforts 
  Did not address the full spectrum of issues 
  Lacked vendor support 
  Were not implemented at the most efficient level 

  When? (1992) – 1994 – Now  
  MPI 1.0, MPI 1.2, MPI 2 
  The MPI Forum organized in 1992 with broad participation 

by 
  Vendors: IBM, Intel, TMC, SGI, Convex, Meiko 
  Portability library writers: PVM, p4 
  Users: application scientists and library writers 
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How? 

  A set of processes communicate by send/recv msgs 

  Each process computes its local data 

More Features: 
  Communicators encapsulate communication spaces for 

library safety 

  Datatypes reduce copying costs and permit heterogeneity 

  Multiple communication modes allow precise buffer 
management 

  Collective operations for scalable global communications 

  … 
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Why? 
Portability; Efficiency; Functionality 
  Goal of large-scale scientific computing: 

 - deliver computing performance to applications 
  Deliverable computing power (in flops): 

 - Pflops 
  Independent research projects contribute new 

ideas to programming modes, languages, and 
libraries 

  Most make a prototype available and encourage use by 
others 

  Users require commitment, support, portability 
  Not all research groups can provide this 

  Failure to achieve critical mass of users can limit 
impact of research 
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Where? 

  The Standard itself: 
 http://www.mpi-forum.org 

  Info: 
http://www.mcs.anl.gov/mpi 

  Implementations: 
  MPICH: http://www.mcs.anl.gov/mpi/mpich 
  Open MPI: http://www.open-mpi.org/ 
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  MPI implementations 
  MPICH:  

MPICH2, MPICH-GM, MPICH-G2, MPICH-VMI,  
         MPICH for Windows 

  LAM/MPI 
  Open MPI (combine FT-MPI, LAM/MPI etc) 

  Programming languages 
  Fortran 
  C 
  C++ 
  Others: Python 
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Programming With MPI 
  MPI is a library 

  All operations are performed with routine calls 
  Basic definitions in  

  mpi.h for C 
  mpif.h for Fortran 77 and 90 
  MPI module for Fortran 90 (optional) 

  First Program: 
  Create 3 processes in a simple MPI job 
  Write out process number  
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Example:   ~mpich2-1.0.7/examples/hellow.c 
#include <stdio.h> 
#include "mpi.h" 

int main( int argc, char *argv[] ) 
{ 
    int rank; 
    int size; 

    MPI_Init( 0, 0 ); 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
    MPI_Comm_size(MPI_COMM_WORLD, &size); 
    printf( "Hello world from process %d of %d\n", rank, size ); 
    MPI_Finalize(); 
    return 0; 
} 
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Finding Out About the Environment 

  Two important questions that arise early in a parallel 
program are: 
  How many processes are participating in this 

computation? 
  Which one am I? 

  MPI provides functions to answer these questions: 
  MPI_Comm_size reports the number of processes. 
  MPI_Comm_rank reports the rank, a number 

between 0 and size-1, identifying the calling process 
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Program Basis 
  #include “mpi.h” 
  How to compile 

  mpicc –o <program_name> <src1> <src2> … 
  e.g. mpicc –o hellow hellow.c 

  How to run (on a single machine) 
  mpiexec –n <proc_num> <program>  

  e.g. mpiexec –n 3 ./hellow 
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Basic concepts 
  Process can be collected into groups 

  Each message is sent in a context, and must be 
received in the same context 

  A group and context together form a communicator  

  A process is identified by its rank in the group 
associated with a communicator 

  There is a default communicator whose group 
contains all initial processes, called 
MPI_COMM_WORLD 
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Basic concepts 
  MPI datatype 

  Predefined:  
MPI_INT, MPI_FLOAT, MPI_DOUBLE  

  User-defined 

  Point-to-point message passing 
  Message tag 

  Collective message passing 
  One-to-all, all-to-one, all-to-all 
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MPI functions overview:  
  more than 125 functions 

MPI is simple:  
 many parallel programs can be written using just 
these six functions, only two of which are non-trivial: 

  MPI_Init:              initiate a MPI computation 
  MPI_Finalize:        terminate an MPI computation 
  MPI_Comm_Size:  determine number of processes 
  MPI_Comm_Rank: determine my process id 

  MPI_Send: send a message 
  MPI_Recv: receive a message 
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MPI functions overview:  
  more than 125 functions 

MPI is simple:  
 alternative set of 6 functions: 

  MPI_Init:              initiate a MPI computation 
  MPI_Finalize:        terminate an MPI computation 
  MPI_Comm_Size:  determine number of processes 
  MPI_Comm_Rank: determine my process id 

  MPI_BCAST:   broadcast a message to all processes 
  MPI_REDUCE: reduce values on all processes to a  

       single value 
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Basic functions 

  int MPI_Init(int *argc, char ***argv)  
  int MPI_Finalize()  

  int MPI_Comm_size ( MPI_Comm comm, int *size ) 
  ret = MPI_Comm_size(MPI_COMM_WORLD, &size); 

  int MPI_Comm_rank ( MPI_Comm comm, int *rank ) 
  ret = MPI_Comm_rank(MPI_COMM_WORLD, &rank);  

  int MPI_Barrier ( MPI_Comm comm ) 
  ret = MPI_Barrier(MPI_COMM_WORLD);  
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Point-to-point communication 

  Blocking message passing 
  int MPI_Send(void *buf, int count, MPI_Datatype datatype,    

       int dest, int tag, MPI_Comm comm) 

  int MPI_Recv(void *buf, int count, MPI_Datatype datatype,  
            int source, int tag, MPI_Comm comm, MPI_Status *status) 

  Non-blocking message passing 
  int MPI_Isend(void *buf, int count, MPI_Datatype datatype,  

   int dest, int tag, MPI_Comm comm, MPI_Request *request) 

  int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,  
   int source, int tag, MPI_Comm comm, MPI_Request *request) 

  int MPI_Wait (MPI_Request  *request, MPI_Status  *status) 
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MPI Basic Send/Receive 

  We need to fill in the details in 

  Things that need specifying: 
  How will “data” be described? 
  How will processes be identified? 
  How will the receiver recognize/screen messages? 
  What will it mean for these operations to complete? 

Process 0 Process 1 

Send(data) 
Receive(data) 



H. Zhang CS595 22 

MPI Tags 

  Messages are sent with an accompanying user-
defined integer tag, to assist the receiving 
process in identifying the message. 

  Messages can be screened at the receiving end 
by specifying a specific tag, or not screened by 
specifying MPI_ANY_TAG as the tag in a receive. 

  Some non-MPI message-passing systems have 
called tags “message types”.  MPI calls them 
tags to avoid confusion with datatypes. 
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MPI Basic (Blocking) Send 

MPI_SEND (sbuf, count, datatype, dest, tag, comm) 

  The message buffer is described by (buf, count, 
datatype). 

  The target process is specified by dest, which is the rank 
of the target process in the communicator specified by 
comm. 

  When this function returns, the data has been delivered to 
the system and the buffer can be reused.  The message 
may not have been received by the target process. 
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MPI Basic (Blocking) Receive 
MPI_RECV(rbuf, count, datatype, source, tag, comm, status) 

  Waits until a matching (on source and tag) message is 
received from the system, and the buffer can be used. 

  source is rank in communicator specified by comm, or 
MPI_ANY_SOURCE. 

  status contains further information 

  Receiving fewer than count occurrences of datatype is 
OK, but receiving more is an error. 
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Send-Receive Summary 

  Send to matching Receive 

  Datatype 
  Basic for heterogeneity 
  Derived for non-contiguous 

  Contexts 
  Message safety for libraries 

  Buffering 
  Robustness and correctness 

A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … ) 
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Retrieving Further Information 
  Status is a data structure allocated in the user’s program. 
  In C: 

int recvd_tag, recvd_from, recvd_count; 
MPI_Status status; 
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status ) 
recvd_tag  = status.MPI_TAG; 
recvd_from = status.MPI_SOURCE; 
MPI_Get_count( &status, datatype, &recvd_count ); 

  In Fortran: 
integer recvd_tag, recvd_from, recvd_count 
integer status(MPI_STATUS_SIZE) 
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. 

status, ierr) 
tag_recvd  = status(MPI_TAG) 
recvd_from = status(MPI_SOURCE) 
call MPI_GET_COUNT(status, datatype, recvd_count, ierr) 
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Tags and Contexts 

  Separation of messages used to be accomplished by use 
of tags, but 
  this requires libraries to be aware of tags used by 

other libraries. 
  this can be defeated by use of “wild card” tags. 

  Contexts are different from tags 
  no wild cards allowed 
  allocated dynamically by the system when a library 

sets up a communicator for its own use. 
  User-defined tags still provided in MPI for user 

convenience in organizing application 
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Collective Operations in MPI 
  Collective operations are called by all processes in a 

communicator. 

  MPI_BCAST  
 distributes data from one process (the root) to all others in 
a communicator. 

  MPI_REDUCE  
 combines data from all processes in communicator and 
returns it to one process. 

  In many numerical algorithms, SEND/RECEIVE can be 
replaced by BCAST/REDUCE, improving both simplicity and 
efficiency. But not always…  
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MPI Collective Communication 

  Communication and computation is coordinated among a 
group of processes in a communicator. 

  Groups and communicators can be constructed “by hand” 
or using MPI’s topology routines. 

  Tags are not used; different communicators deliver 
similar functionality. 

  No non-blocking collective operations. 
  Three classes of operations: 

  synchronization,  
  data movement,  
  collective computation. 
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Synchronization 

  MPI_Barrier( comm ) 

  Blocks until all processes in the group of 
the communicator comm call it. 
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Collective Data Movement 

A 
B 

D 
C 

B C D 

A 
A 

A 
A 

Broadcast 

Scatter 

Gather 

A 

A 

P0 
P1 

P2 

P3 

P0 
P1 

P2 

P3 
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More Collective Data Movement 

A 
B 

D 
C 

A0 B0 C0 D0 

A1 B1 C1 D1 

A3 B3 C3 D3 

A2 B2 C2 D2 

A0 A1 A2 A3 
B0 B1 B2 B3 

D0 D1 D2 D3 

C0 C1 C2 C3 

A B C D 
A B C D 

A B C D 
A B C D 

Allgather 

Alltoall 

P0 
P1 

P2 

P3 

P0 
P1 

P2 

P3 
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Collective Computation 

P0 
P1 

P2 

P3 

P0 
P1 

P2 

P3 

A 
B 

C 
C 

A 
B 

D 
C 

ABCD 

A 
AB 

ABC 
ABCD 

Reduce 

Scan 
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MPI Collective Routines 

  Many Routines:   

 Allgather, Allgatherv, Allreduce, 
Alltoall, Alltoallv, Bcast, Gather, 
Gatherv, Reduce, ReduceScatter, Scan, 
Scatter, Scatterv 

  All versions deliver results to all participating 
processes. 

  V versions allow the hunks to have different sizes. 

  Allreduce, Reduce, ReduceScatter, and Scan 
take both built-in and user-defined functions. 
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MPI Built-in Collective Computation Operations 

  MPI_Max 
  MPI_Min 
  MPI_Prod 
  MPI_Sum 
  MPI_Land 
  MPI_Lor 
  MPI_Lxor 
  MPI_Band 
  MPI_Bor 
  MPI_Bxor 
  MPI_Maxloc 
  MPI_Minloc 

Maximum 
Minimum 
Product 
Sum 
Logical and 
Logical or 
Logical exclusive or 
Binary and 
Binary or 
Binary exclusive or 
Maximum and location 
Minimum and location 
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Collective communication 

  Involves coordinated communication within a group of 
processes 

  All collective routines block until they are locally complete 

  int MPI_Bcast ( void *buffer, int count, MPI_Datatype datatype, int 
      root, MPI_Comm comm ) 

  int MPI_Scatter ( void *sendbuf, int sendcnt, MPI_Datatype  
      sendtype, void *recvbuf, int recvcnt, MPI_Datatype 
      recvtype, int root, MPI_Comm comm )  

  int MPI_Gather ( void *sendbuf, int sendcnt, MPI_Datatype  
      sendtype, void *recvbuf, int recvcount,  
      MPI_Datatype recvtype, int root, MPI_Comm comm )  
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Example: Calculating Pi 

1 

4 
  One way to calculate Pi: 

  Calculating Pi via numerical 
integration 
  Divide interval up into 

subintervals 
  Assign subintervals to processes 
  Each process calculates partial 

sum 
  Add all the partial sums together 

to get Pi 

0 
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Example:  PI in C (1/2) 
#include "mpi.h" 
#include <math.h> 
int main(int argc, char *argv[]) 
{ 

int done = 0, n, myid, numprocs, i, rc; 
double PI25DT = 3.141592653589793238462643; 
double mypi, pi, width, sum, x, a; 
MPI_Init(&argc,&argv); 
MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
while (!done) { 
  if (myid == 0) { 
    printf("Enter the number of intervals: (0 quits) "); 
    scanf("%d",&n); 
  } 

   MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
  if (n == 0) break; 

root process 
input/output data 



39 

Example:  PI in C (2/2)  
     width = 1.0 / (double) n; 

  sum = 0.0; 
  for (i = myid + 1; i <= n; i += numprocs) { 
    x = width * ((double)i - 0.5); 
    sum += 4.0 / (1.0 + x*x); 
  } 
  mypi = width * sum; 

   MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 
             MPI_COMM_WORLD); 
  if (myid == 0) 
    printf("pi is approximately %.16f, Error is %.16f\n", 
            pi, fabs(pi - PI25DT)); 
} 
MPI_Finalize(); 

 return 0; 
} 

output data 

operation 

root process 

input location 
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Examples 

void main(int argc, char **argv) { 
     int msg[100];  
     int tag = 1; 
     … 

 MPI_Init(&argc, &argv);   
 MPI_Comm_size(MPI_COMM_WORLD, &size);  

     MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
     … 

 if (rank == 0 ) { 
   MPI_Send(msg, msgsize, MPI_INT, 1, tag, MPI_COMM_WORLD) 
 } else if (rank == 1) { 
   MPI_Recv(msg, msgsize, MPI_INT, 0, tag, MPI_COMM_WORLD, &status); 
 } 
 MPI_Bcast(msg, msgsize, MPI_INT, 0, MPI_COMM_WORLD); 

 MPI_Finalize(); 
} 
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Summary: Using MPI 

  The Message Passing Interface is: 
  a library for parallel communication 
  a system for launching parallel jobs (mpirun/mpiexec) 
  a community standard 

  Launching jobs is easy 
  mpiexec -n 3 ./hellow 

  You should never have to make MPI calls when using 
PETSc 
  Almost never 
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Summary: MPI Concepts 
  Communicator 

  A context (or scope) for parallel communication (“Who can I talk to") 
  There are two defaults: 

  yourself (MPI_COMM_SELF), 
  and everyone launched (MPI_COMM_WORLD) 

  Can create new communicators by splitting existing ones 

  Point-to-point communication 
  Happens between two processes (e.g.,  MatMult()) 

  Reduction or scan operations 
  Happens among all processes (e.g., VecDot()) 
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Homework 2 

1. Install MPI and PETSc 
2. Test the installation of MPI 
3. Test the installation of PETSc 
4. Read Numerical Linear Algebra, by Trefethen and Bau:  

 Lecture 1: Matrix-Vector Multiplication 


