
U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
	

O
bj

ec
t-O

ri
en

te
d

So
ftw

ar
e

En
gi

ne
er

in
g	

 Chapter 1: Introduction	

	

	

 	

 2	

Software Production has a Poor Track Record

Example: Space Shuttle Software
♦  Expensive: $10 Billion, millions of dollars more than

planned
♦  Delayed delivery: 3 years late
♦  Crash: First launch of Columbia was cancelled because

of a synchronization problem with the Shuttle's 5 onboard
computers.
 Error was traced back to a change made 2 years earlier when a

programmer changed a delay factor in an interrupt handler from
50 to 80 milliseconds.

  The likelihood of the error was small enough, that the error
caused no harm during thousands of hours of testing.

♦  Errors and bugs still exist.
  Astronauts are supplied with a book of known software

problems "Program Notes and Waivers".

	

	

 	

 3	

Software Engineering: A Problem Solving Activity

♦  Analysis: Understand the nature of the problem and
break the problem into pieces

♦  Synthesis: Put the pieces together into a large structure

For problem solving we use
♦  Techniques (methods):

  Formal procedures for producing results using some well-defined
notation

♦  Methodologies:
 Collection of techniques applied across software development

and unified by a philosophical approach
♦  Tools:

  Instrument or automated systems to accomplish a technique

	

	

 	

 4	

20"

Software Engineering: Definition

Software Engineering is a collection of techniques,
methodologies and tools that help
with the production of
♦  a high quality software system
♦  with a given budget
♦  before a given deadline
 while changes occur.

A disciplined approach to the design, production, and
maintenance of computer programs

	

	

 	

 5	

Scientist vs. Engineer

♦  Computer Scientist
  Proves theorems about algorithms, designs languages, defines

knowledge representation schemes
 Do not have deadline…

♦  Engineer
 Develops a solution for an application-specific problem for a client
 Uses computers & languages, tools, techniques and methods

♦  Software Engineer
 Works in multiple application domains
 Has only 3 months...
 …while changes occur in requirements and available technology

 Learn for a lifetime 

	

	

 	

 6	

Factors affecting the quality of a software system

♦  Complexity:
  The system is so complex that no single programmer can

understand it anymore
  The introduction of one bug fix causes another bug

♦  Change:
  The “Entropy” of a software system increases with each change:

Each implemented change erodes the structure of the system
which makes the next change even more expensive.

 As time goes on, the cost to implement a change will be too high,
and the system will then be unable to support its intended task.
This is true of all systems, independent of their application
domain or technological base.

	

	

 	

 7	

Why are software systems so complex?

♦ The problem domain is difficult
♦ The development process is very difficult to

manage
♦ Software offers extreme flexibility
♦ Software is a discrete system

 Continuous systems have no hidden surprises
 Discrete systems have!

	

	

 	

 8	

Dealing with Complexity

1.  Abstraction
2.  Decomposition
3.  Hierarchy

	

	

 	

 9	

1. Abstraction

♦  Inherent human limitation to deal with
complexity

♦ Chunking: Group collection of objects
♦  Ignore unessential details: => Models

	

	

 	

 10	

Models are used to provide abstractions
♦  System Model:

 Object Model:
 What is the structure of the system? What are the objects and how
are they related?

  Functional model:
 What are the functions of the system? How is data flowing through
the system?

 Dynamic model:
 How does the system react to external events? How is the event
flow in the system ?

♦  Task Model:
  What are the dependencies between the tasks?
  How can this be done within the time limit?
  What are the roles in the project or organization?

♦  Issues Model:
  What are the open and closed issues? What constraints were posed by the

client? What resolutions were made?

	

	

 	

 11	

Which decomposition is the right one?	

2. Decomposition

♦  A technique used to master complexity (“divide and
conquer”)

♦  Functional decomposition
  The system is decomposed into modules
 Each module is a major processing step (function) in the

application domain
 Modules can be decomposed into smaller modules

♦  Object-oriented decomposition
  The system is decomposed into classes (“objects”)
 Each class is a major abstraction in the application domain
 Classes can be decomposed into smaller classes

	

	

 	

 12	

Functional Decomposition

Top Level functions	

Level 1 functions	

Level 2 functions	

Machine Instructions	

System 	

Function	

Load R10	

 Add R1, R10	

Read Input	

 Transform	

 Produce	

Output	

Transform	

 Produce	

Output	

Read Input	

	

	

 	

 13	

Functional Decomposition

♦ Functionality is spread all over the system
♦ Maintainer must understand the whole system to

make a single change to the system

♦ Consequence:
 Codes are hard to understand
 Code that is complex and impossible to

maintain
 User interface is often awkward and non-

intuitive

	

	

 	

 14	

3. Hierarchy

♦ We got abstractions and decomposition
 This leads us to chunks (classes, objects)

which we view with object model
♦ Another way to deal with complexity is to provide

simple relationships between the chunks
♦ One of the most important relationships is

hierarchy
♦ Two important hierarchies

 "Part of" hierarchy
 "Is-kind-of" hierarchy

	

	

 	

 15	

Part of Hierarchy

Computer!

I/O Devices! CPU! Memory!

Cache! ALU! Program!
 Counter!

	

	

 	

 16	

Is-Kind-of Hierarchy (Taxonomy)

Cell!

Muscle Cell! Blood Cell! Nerve Cell!

Striate! Smooth! Red! White! Cortical! Pyramidal!

	

	

 	

 17	

So where are we right now?
♦  Three ways to deal with complexity:

 Abstraction
 Decomposition
 Hierarchy

♦  Object-oriented decomposition is a good methodology
 Unfortunately, depending on the purpose of the

system, different objects can be found
♦  How can we do it right?

 Many different possibilities
 Our current approach: Start with a description of the

functionality (Use case model), then proceed to the
object model

 This leads us to the software lifecycle

	

	

 	

 18	

Software Lifecycle Activities

Subsystems

Structured By

class...!
class...!
class...!

Source
Code

Implemented
 By

Solution
Domain
Objects

Realized By

System	

Design	

Object	

Design	

Implemen-	

tation	

 Testing	

Application
Domain
Objects

Expressed in
Terms Of

Test
Cases

?

Verified
By

class....!?

Requirements	

Elicitation	

Use Case
Model

Analysis	

...and their models	

	

	

 	

 19	

Goals of Good Software Design:
♦  Robust:
 handle exceptional conditions gracefully and behaves consistently

♦  Understandable:
 can be used by someone other than the original implementor; names of
the components should be derived from the problem domain

♦  Modular:
 minimize the number of relationships between components

♦  Maintainable:
 problems are easily isolated; repair of one problem does not introduce
problems in unrelated parts

♦  Extendible:
 accept new forms of data and new algorithms without disrupting
existing software

♦  Reusable:

	

	

 	

 20	

Reusability and Extensibility
 less than half a typical system can be built of reusable

software components (89)

♦  A good software design solves a specific problem, but is
general enough to address future problems (for example,
changing requirements)

♦  Experts do not solve every problem from scratch
 They reuse solutions that have worked for them in the

past
♦  Goal for the software engineer:

 Design the software to be reusable across application
domains and designs, and be extensible

♦  How?
e.g. use design patterns

	

	

 	

 21	

Example:

PETSc
www.mcs.anl.gov/petsc/petsc2/documentation/

faq.html#work-efficiently

	

	

 	

 22	

How do such a small group of people manage to write and maintain such
a large and marvelous package as PETSc?

♦  a) We work very efficiently.
 We use Emacs for all editing; the etags feature makes navigating and
changing our source code very easy.
 Our manual pages are generated automatically from formatted comments in
the code, thus alleviating the need for creating and maintaining manual
pages.
 We employ automatic nightly tests of PETSc on several different machine
architectures. This process helps us to discover problems the day after we
have introduced them rather than weeks or months later.

♦  b) We are very careful in our design (and are constantly revising our design)
to make the package easy to use, write, and maintain.

♦  c) We are willing to do the grunt work of going through all the code regularly
to make sure that all code conforms to our interface design. We will never
keep in a bad design decision simply because changing it will require a lot of
editing; we do a lot of editing.

♦  d) We constantly seek out and experiment with new design ideas; we retain
the useful ones and discard the rest. All of these decisions are based on
practicality.

	

	

 	

 23	

♦  e) Function and variable names are chosen to be very consistent throughout
the software. Even the rules about capitalization are designed to make it
easy to figure out the name of a particular object or routine. Our memories
are terrible, so careful consistent naming puts less stress on our limited
human RAM.

♦  f) The PETSc directory tree is carefully designed to make it easy to move
throughout the entire package.

♦  g) Our bug reporting system, based on email to petsc-maint@mcs.anl.gov,
makes it very simple to keep track of what bugs have been found and fixed.
In addition, the bug report system retains an archive of all reported
problems and fixes, so it is easy to refind fixes to previously discovered
problems.

♦  h) We contain the complexity of PETSc by using object-oriented
programming techniques including data encapsulation (this is why your
program cannot, for example, look directly at what is inside the object Mat)
and polymorphism (you call MatMult() regardless of whether your matrix is
dense, sparse, parallel or sequential; you don't call a different routine for
each format).

♦  i) We try to provide the functionality requested by our users.

♦  j) We never sleep.

