
Chapter 8, Object Design
Reuse and Patterns II

U
sin

g
U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
	

O
bj

ec
t-O

ri
en

te
d

So
ftw

ar
e

En
gi

ne
er

in
g	

 	

 	

 	

 2	

Use design patterns
 to keep system models simple

♦ During Object Modeling we do many transformations
and changes to the object model.

♦  It is important to make sure the object design model
stays simple!

 	

 	

 	

 3	

Outline of the Lecture

♦ Design Patterns
 Usefulness of design patterns
 Design Pattern Categories

♦ Patterns covered
1. Composite: Model dynamic aggregates
2. Facade: Interfacing to subsystems
3. Adapter: Interfacing to existing systems (legacy systems)
4. Bridge: Interfacing to existing and future systems
5. Abstract Factory
6. Proxy
7. Command
8. Strategy

 	

 	

 	

 4	

A design pattern has four elements:

1. Name
2. Problem description
3. Solution:

 stated as a set of collaboration classes and
interfaces

4. Consequences

 	

 	

 	

 5	

Facade Pattern

♦  Provides a unified interface to a set of objects in a subsystem.
♦  A facade defines a higher-level interface that makes the

subsystem easier to use (i.e. it abstracts out the gory details)
♦  Facades allow us to provide a closed architecture

 	

 	

 	

 6	

Design Example
♦  Subsystem 1 can look into the

Subsystem 2 (vehicle subsystem)
and call on any component or
class operation at will.

♦  This is “Ravioli Design”

♦  Why is this good?
 Efficiency

♦  Why is this bad?
 Can’t expect the caller to

understand how the subsystem
works or the complex
relationships within the
subsystem.

  the subsystem will be misused,
leading to non-portable code

Subsystem 2!

Subsystem 1!

AIM!

Card!

SA/RT!

Seat!

 	

 	

 	

 7	

Realizing an Opaque Architecture with a Facade

♦  The subsystem decides
exactly how it is accessed.

♦  No need to worry about
misuse by callers

♦  If a facade is used
 the subsystem can be used
in an early integration test
 We need to write only a

driver

VIP Subsystem!

AIM!

Card!

SA/RT!

Seat!

Vehicle Subsystem API!

 	

 	

 	

 8	

Bridge Pattern

♦ Use a bridge to “decouple an abstraction from its
implementation so that the two can vary
independently”. (From [Gamma et al 1995])

♦ Also know as a Handle/Body pattern.

♦ Allows different implementations of an interface to be
decided upon dynamically.

 	

 	

 	

 9	

Bridge Pattern

 	

 	

 	

 10	

Design Patterns encourage reusable Designs

♦  A facade pattern should be used by all subsystems in a
software system. It defines all the services of the subsystem.
  The facade will delegate requests to the appropriate components within

the subsystem. Most of the time the facade does not need to be
changed. When the component is changed,

Reduce coupling
♦  Adapters should be used to interface to existing components.

  For example, a smart card software system should provide an adapter
for a particular smart card reader and other hardware that it controls
and queries.

Reuse
♦  Bridges should be used to interface to a set of objects

 where the full set is not completely known at analysis or design time.
 when the subsystem must be extended later after the system has been

deployed and client programs are in the field(dynamic extension).
Extensibility

 	

 	

 	

 11	

Summary
♦  Design patterns are partial solutions to common problems

  such as separating an interface from a number of alternate
implementations

 wrapping around a set of legacy classes

  protecting a caller from changes associated with specific platforms.

♦  A design pattern is composed of a small number of classes
  use delegation and inheritance

  provide a robust and modifiable solution.

♦  These classes can be adapted and refined for the specific
system under construction.
 Customization of the system
 Reuse of existing solutions

 	

 	

 	

 12	

♦  Composite Pattern:
 Models trees with dynamic width and dynamic depth
 Recursive part-whole hierarchy

♦  Facade Pattern:
 Interface to a subsystem
 Reduce coupling (encapsulating subsystems)

♦  Adapter Pattern:
 Interface to reality
 Reuse (wrapping around legacy code)

♦  Bridge Pattern:
 Interface to reality and prepare for future
 Extensible (allow alternate implementation)

