
Introduction
Overview of SLEPc

Basic Usage
Advanced Features

SLEPc: Scalable Library for Eigenvalue Problem
Computations

Jose E. Roman

Joint work with A. Tomas and E. Romero

Universidad Politécnica de Valencia, Spain

10th ACTS Workshop - August, 2009



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Outline

1 Introduction

2 Overview of SLEPc

3 Basic Usage
Eigenvalue Solvers
Spectral Transformation
SVD Solvers

4 Advanced Features



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Introduction



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Eigenvalue Problems

Consider the following eigenvalue problems

Standard Eigenproblem

Ax = λx

Generalized Eigenproblem

Ax = λBx

where

I λ is a (complex) scalar: eigenvalue

I x is a (complex) vector: eigenvector

I Matrices A and B can be real or complex

I Matrices A and B can be symmetric (Hermitian) or not

I Typically, B is symmetric positive (semi-) definite



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Solution of the Eigenvalue Problem

There are n eigenvalues (counted with their multiplicities)

Partial eigensolution: nev solutions

λ0, λ1, . . . , λnev−1 ∈ C
x0, x1, . . . , xnev−1 ∈ Cn

nev = number of
eigenvalues /
eigenvectors
(eigenpairs)

Different requirements:

I Compute a few of the dominant eigenvalues (largest
magnitude)

I Compute a few λi’s with smallest or largest real parts

I Compute all λi’s in a certain region of the complex plane



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Solution of the Eigenvalue Problem

There are n eigenvalues (counted with their multiplicities)

Partial eigensolution: nev solutions

λ0, λ1, . . . , λnev−1 ∈ C
x0, x1, . . . , xnev−1 ∈ Cn

nev = number of
eigenvalues /
eigenvectors
(eigenpairs)

Different requirements:

I Compute a few of the dominant eigenvalues (largest
magnitude)

I Compute a few λi’s with smallest or largest real parts

I Compute all λi’s in a certain region of the complex plane



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Spectral Transformation

A general technique that can be used in many methods

Ax = λx =⇒ Tx = θx

In the transformed problem

I The eigenvectors are not altered

I The eigenvalues are modified by a simple relation

I Convergence is usually improved (better separation)

Shift of Origin

TS = A + σI

Shift-and-invert

TSI = (A−σI)−1

Cayley

TC = (A−σI)−1(A+τI)

Drawback: T not computed explicitly, linear solves instead



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Spectral Transformation

A general technique that can be used in many methods

Ax = λx =⇒ Tx = θx

In the transformed problem

I The eigenvectors are not altered

I The eigenvalues are modified by a simple relation

I Convergence is usually improved (better separation)

Shift of Origin

TS = A + σI

Shift-and-invert

TSI = (A−σI)−1

Cayley

TC = (A−σI)−1(A+τI)

Drawback: T not computed explicitly, linear solves instead



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Spectral Transformation

A general technique that can be used in many methods

Ax = λx =⇒ Tx = θx

In the transformed problem

I The eigenvectors are not altered

I The eigenvalues are modified by a simple relation

I Convergence is usually improved (better separation)

Shift of Origin

TS = A + σI

Shift-and-invert

TSI = (A−σI)−1

Cayley

TC = (A−σI)−1(A+τI)

Drawback: T not computed explicitly, linear solves instead



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Singular Value Problems

Consider the SVD decomposition of a rectangular matrix
A ∈ Rm×n

Singular Value Decomposition

A = UΣV T =
n∑

i=1

uiσiv
T
i

where

I σ1, σ2, . . . , σn: singular values

I u1, u2, . . . , un: left singular vectors

I v1, v2, . . . , vn: right singular vectors



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Solution of the Singular Value Problem

There are n singular values (counted with their multiplicities)

Partial solution: nsv solutions

σ0, σ1, . . . , σnsv−1 ∈ R
u0, u1, . . . , unsv−1 ∈ Rm

v0, v1, . . . , vnsv−1 ∈ Rn

nsv = number of
singular values /
vectors (singular
triplets)

I Compute a few smallest or largest σi’s

Alternatives:

I Solve eigenproblem AT A

I Solve eigenproblem H(A) =
[

0m×m A
AT 0n×n

]
I Bidiagonalization



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Solution of the Singular Value Problem

There are n singular values (counted with their multiplicities)

Partial solution: nsv solutions

σ0, σ1, . . . , σnsv−1 ∈ R
u0, u1, . . . , unsv−1 ∈ Rm

v0, v1, . . . , vnsv−1 ∈ Rn

nsv = number of
singular values /
vectors (singular
triplets)

I Compute a few smallest or largest σi’s

Alternatives:

I Solve eigenproblem AT A

I Solve eigenproblem H(A) =
[

0m×m A
AT 0n×n

]
I Bidiagonalization



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Overview of SLEPc



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Design Considerations
I Various problem characteristics: Problems can be

real/complex, Hermitian/non-Hermitian
I Many ways of specifying which solutions must be sought
I Many formulations: not all eigenproblems are formulated as

simply Ax = λx or Ax = λBx

Goal: provide a uniform, coherent way of addressing these problems

I Internally, solvers can be quite complex (deflation, restart, ...)
I Spectral transformations can be used irrespective of the solver
I Repeated linear solves may be required
I SVD can be solved via associated eigenproblem or

bidiagonalization

Goal: hide eigensolver complexity and separate spectral transform



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Design Considerations
I Various problem characteristics: Problems can be

real/complex, Hermitian/non-Hermitian
I Many ways of specifying which solutions must be sought
I Many formulations: not all eigenproblems are formulated as

simply Ax = λx or Ax = λBx

Goal: provide a uniform, coherent way of addressing these problems

I Internally, solvers can be quite complex (deflation, restart, ...)
I Spectral transformations can be used irrespective of the solver
I Repeated linear solves may be required
I SVD can be solved via associated eigenproblem or

bidiagonalization

Goal: hide eigensolver complexity and separate spectral transform



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Design Considerations
I Various problem characteristics: Problems can be

real/complex, Hermitian/non-Hermitian
I Many ways of specifying which solutions must be sought
I Many formulations: not all eigenproblems are formulated as

simply Ax = λx or Ax = λBx

Goal: provide a uniform, coherent way of addressing these problems

I Internally, solvers can be quite complex (deflation, restart, ...)
I Spectral transformations can be used irrespective of the solver
I Repeated linear solves may be required
I SVD can be solved via associated eigenproblem or

bidiagonalization

Goal: hide eigensolver complexity and separate spectral transform



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Design Considerations
I Various problem characteristics: Problems can be

real/complex, Hermitian/non-Hermitian
I Many ways of specifying which solutions must be sought
I Many formulations: not all eigenproblems are formulated as

simply Ax = λx or Ax = λBx

Goal: provide a uniform, coherent way of addressing these problems

I Internally, solvers can be quite complex (deflation, restart, ...)
I Spectral transformations can be used irrespective of the solver
I Repeated linear solves may be required
I SVD can be solved via associated eigenproblem or

bidiagonalization

Goal: hide eigensolver complexity and separate spectral transform



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

What Users Need

Provided by PETSc

I Abstraction of mathematical objects: vectors and matrices

I Efficient linear solvers (direct or iterative)

I Easy programming interface

I Run-time flexibility, full control over the solution process

I Parallel computing, mostly transparent to the user

Provided by SLEPc

I State-of-the-art eigensolvers

I Spectral transformations

I SVD solvers



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

What Users Need

Provided by PETSc

I Abstraction of mathematical objects: vectors and matrices

I Efficient linear solvers (direct or iterative)

I Easy programming interface

I Run-time flexibility, full control over the solution process

I Parallel computing, mostly transparent to the user

Provided by SLEPc

I State-of-the-art eigensolvers

I Spectral transformations

I SVD solvers



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Summary

PETSc: Portable, Extensible Toolkit for Scientific Computation

Software for the scalable (parallel) solution of algebraic systems
arising from partial differential equation (PDE) simulations

I Developed at Argonne National Lab since 1991

I Usable from C, C++, Fortran77/90

I Focus on abstraction, portability, interoperability

I Extensive documentation and examples

I Freely available and supported through email

http://www.mcs.anl.gov/petsc

Current version: 3.0.0 (released Dec 2008)

http://www.mcs.anl.gov/petsc


Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Summary

SLEPc: Scalable Library for Eigenvalue Problem Computations

A general library for solving large-scale sparse eigenproblems on
parallel computers

I For standard and generalized eigenproblems

I For real and complex arithmetic

I For Hermitian or non-Hermitian problems

Also support for the partial SVD decomposition

http://www.grycap.upv.es/slepc

Current version: 3.0.0 (released Feb 2009)

http://www.grycap.upv.es/slepc


Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Structure of SLEPc (1)

SLEPc extends PETSc with three new objects: EPS, ST, SVD

EPS: Eigenvalue Problem Solver

I The user specifies an eigenproblem via this object

I Provides a collection of eigensolvers

I Allows the user to specify a number of parameters (e.g. which
portion of the spectrum)



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Structure of SLEPc (2)

ST: Spectral Transformation

I Used to transform the original problem into Tx = θx

I Always associated to an EPS object, not used directly

SVD: Singular Value Decomposition

I The user specifies the SVD problem via this object

I Transparently provides the associated eigenproblems or a
specialized solver



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Structure of SLEPc (2)

ST: Spectral Transformation

I Used to transform the original problem into Tx = θx

I Always associated to an EPS object, not used directly

SVD: Singular Value Decomposition

I The user specifies the SVD problem via this object

I Transparently provides the associated eigenproblems or a
specialized solver



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

PETSc/SLEPc Numerical Components
PETSc

Vectors

Index Sets

Indices Block Indices Stride Other

Matrices

Compressed
Sparse Row

Block Compressed
Sparse Row

Block
Diagonal Dense Other

Preconditioners

Additive
Schwarz

Block
Jacobi

Jacobi ILU ICC LU Other

Krylov Subspace Methods

GMRES CG CGS Bi-CGStab TFQMR Richardson Chebychev Other

Nonlinear Systems

Line
Search

Trust
Region Other

Time Steppers

Euler
Backward

Euler

Pseudo
Time Step Other

SLEPc

SVD Solvers

Cross
Product

Cyclic
Matrix

Lanczos
Thick Res.
Lanczos

Eigensolvers

Krylov-Schur Arnoldi Lanczos Other

Spectral Transform

Shift Shift-and-invert Cayley Fold



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

PETSc/SLEPc Numerical Components
PETSc

Vectors

Index Sets

Indices Block Indices Stride Other

Matrices

Compressed
Sparse Row

Block Compressed
Sparse Row

Block
Diagonal Dense Other

Preconditioners

Additive
Schwarz

Block
Jacobi

Jacobi ILU ICC LU Other

Krylov Subspace Methods

GMRES CG CGS Bi-CGStab TFQMR Richardson Chebychev Other

Nonlinear Systems

Line
Search

Trust
Region Other

Time Steppers

Euler
Backward

Euler

Pseudo
Time Step Other

SLEPc

SVD Solvers

Cross
Product

Cyclic
Matrix

Lanczos
Thick Res.
Lanczos

Eigensolvers

Krylov-Schur Arnoldi Lanczos Other

Spectral Transform

Shift Shift-and-invert Cayley Fold



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Basic Usage



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

EPS: Basic Usage

Usual steps for solving an eigenvalue problem with SLEPc:

1. Create an EPS object

2. Define the eigenvalue problem

3. (Optionally) Specify options for the solution

4. Run the eigensolver

5. Retrieve the computed solution

6. Destroy the EPS object

All these operations are done via a generic interface, common to
all the eigensolvers



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

EPS: Simple Example
EPS eps; /* eigensolver context */
Mat A, B; /* matrices of Ax=kBx */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);

}

EPSDestroy(eps);



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

EPS: Simple Example
EPS eps; /* eigensolver context */
Mat A, B; /* matrices of Ax=kBx */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);

}

EPSDestroy(eps);



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

EPS: Simple Example
EPS eps; /* eigensolver context */
Mat A, B; /* matrices of Ax=kBx */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);

}

EPSDestroy(eps);



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

EPS: Simple Example
EPS eps; /* eigensolver context */
Mat A, B; /* matrices of Ax=kBx */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);

}

EPSDestroy(eps);



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

EPS: Simple Example
EPS eps; /* eigensolver context */
Mat A, B; /* matrices of Ax=kBx */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);

}

EPSDestroy(eps);



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Details: Solving the Problem

EPSSolve(EPS eps)

Launches the eigensolver

Currently available eigensolvers:

I Power Iteration and RQI

I Subspace Iteration with Rayleigh-Ritz projection and locking

I Arnoldi method with explicit restart and deflation
I Lanczos method with explicit restart and deflation

I Reorthogonalization: Local, Partial, Periodic, Selective, Full

I Krylov-Schur (default)

Also interfaces to external software: ARPACK, PRIMME, ...



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Details: Problem Definition

EPSSetOperators(EPS eps, Mat A, Mat B)

Used for passing the matrices that constitute the problem

I A generalized problem Ax = λBx is specified by A and B
I For a standard problem Ax = λx set B=PETSC NULL

EPSSetProblemType(EPS eps,EPSProblemType type)

Used to indicate the problem type

Problem Type EPSProblemType Command line key
Hermitian EPS HEP -eps hermitian
Generalized Hermitian EPS GHEP -eps gen hermitian
Non-Hermitian EPS NHEP -eps non hermitian
Generalized Non-Herm. EPS GNHEP -eps gen non hermitian



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Details: Problem Definition

EPSSetOperators(EPS eps, Mat A, Mat B)

Used for passing the matrices that constitute the problem

I A generalized problem Ax = λBx is specified by A and B
I For a standard problem Ax = λx set B=PETSC NULL

EPSSetProblemType(EPS eps,EPSProblemType type)

Used to indicate the problem type

Problem Type EPSProblemType Command line key
Hermitian EPS HEP -eps hermitian
Generalized Hermitian EPS GHEP -eps gen hermitian
Non-Hermitian EPS NHEP -eps non hermitian
Generalized Non-Herm. EPS GNHEP -eps gen non hermitian



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Details: Specification of Options

EPSSetFromOptions(EPS eps)

Looks in the command line for options related to EPS

For example, the following command line
% program -eps_hermitian

is equivalent to a call EPSSetProblemType(eps,EPS HEP)

Other options have an associated function call
% program -eps_nev 6 -eps_tol 1e-8

EPSView(EPS eps, PetscViewer viewer)

Prints information about the object (equivalent to -eps view)



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Details: Specification of Options

EPSSetFromOptions(EPS eps)

Looks in the command line for options related to EPS

For example, the following command line
% program -eps_hermitian

is equivalent to a call EPSSetProblemType(eps,EPS HEP)

Other options have an associated function call
% program -eps_nev 6 -eps_tol 1e-8

EPSView(EPS eps, PetscViewer viewer)

Prints information about the object (equivalent to -eps view)



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Details: Specification of Options

EPSSetFromOptions(EPS eps)

Looks in the command line for options related to EPS

For example, the following command line
% program -eps_hermitian

is equivalent to a call EPSSetProblemType(eps,EPS HEP)

Other options have an associated function call
% program -eps_nev 6 -eps_tol 1e-8

EPSView(EPS eps, PetscViewer viewer)

Prints information about the object (equivalent to -eps view)



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Details: Viewing Current Options

Sample output of -eps view

EPS Object:

problem type: symmetric eigenvalue problem

method: krylovschur

selected portion of spectrum: largest eigenvalues in magnitude

number of eigenvalues (nev): 1

number of column vectors (ncv): 16

maximum dimension of projected problem (mpd): 16

maximum number of iterations: 100

tolerance: 1e-07

dimension of user-provided deflation space: 0

IP Object:

orthogonalization method: classical Gram-Schmidt

orthogonalization refinement: if needed (eta: 0.707100)

ST Object:

type: shift

shift: 0



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

EPS: Run-Time Examples

% program -eps_view -eps_monitor

% program -eps_type krylovschur -eps_nev 6 -eps_ncv 24

% program -eps_type arnoldi -eps_tol 1e-8 -eps_max_it 2000

% program -eps_type subspace -eps_hermitian -log_summary

% program -eps_type lapack

% program -eps_type arpack -eps_plot_eigs -draw_pause -1

% program -eps_type primme -eps_smallest_real



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Built-in Support Tools

I Plotting computed eigenvalues

% program -eps_plot_eigs

I Printing profiling information

% program -log_summary

I Debugging

% program -start_in_debugger
% program -malloc_dump



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Built-in Support Tools

I Monitoring convergence
(textually)

% program -eps_monitor

I Monitoring convergence
(graphically)

% program -draw_pause 1
-eps_monitor_draw



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Spectral Transformation in SLEPc

An ST object is always associated to any EPS object

Ax = λx =⇒ Tx = θx

I The user need not manage the ST object directly

I Internally, the eigensolver works with the operator T

I At the end, eigenvalues are transformed back automatically

ST Standard problem Generalized problem

shift A + σI B−1A + σI
fold (A + σI)2 (B−1A + σI)2

sinvert (A− σI)−1 (A− σB)−1B
cayley (A− σI)−1(A + τI) (A− σB)−1(A + τB)



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Spectral Transformation in SLEPc

An ST object is always associated to any EPS object

Ax = λx =⇒ Tx = θx

I The user need not manage the ST object directly

I Internally, the eigensolver works with the operator T

I At the end, eigenvalues are transformed back automatically

ST Standard problem Generalized problem

shift A + σI B−1A + σI
fold (A + σI)2 (B−1A + σI)2

sinvert (A− σI)−1 (A− σB)−1B
cayley (A− σI)−1(A + τI) (A− σB)−1(A + τB)



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Spectral Transformation in SLEPc

An ST object is always associated to any EPS object

Ax = λx =⇒ Tx = θx

I The user need not manage the ST object directly

I Internally, the eigensolver works with the operator T

I At the end, eigenvalues are transformed back automatically

ST Standard problem Generalized problem

shift A + σI B−1A + σI
fold (A + σI)2 (B−1A + σI)2

sinvert (A− σI)−1 (A− σB)−1B
cayley (A− σI)−1(A + τI) (A− σB)−1(A + τB)



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Illustration of Spectral Transformation

Spectrum folding

θ

σ λ
λ1

θ1

λ2

θ2

λ3

θ3

θ=(λ−σ)2

Shift-and-invert
θ

0 σ λ
λ1

θ1

λ2

θ2

θ= 1
λ−σ



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Accessing the ST Object

The user does not create the ST object

EPSGetST(EPS eps, ST *st)

Gets the ST object associated to an EPS

Necessary for setting options in the source code

Linear Solves. Most operators contain an inverse

I Linear solves are handled internally via a KSP object

STGetKSP(ST st, KSP *ksp)

Gets the KSP object associated to an ST

All KSP options are available, by prepending the -st prefix



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Accessing the ST Object

The user does not create the ST object

EPSGetST(EPS eps, ST *st)

Gets the ST object associated to an EPS

Necessary for setting options in the source code

Linear Solves. Most operators contain an inverse

I Linear solves are handled internally via a KSP object

STGetKSP(ST st, KSP *ksp)

Gets the KSP object associated to an ST

All KSP options are available, by prepending the -st prefix



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

ST: Run-Time Examples

% program -eps_type power -st_type shift -st_shift 1.5

% program -eps_type power -st_type sinvert -st_shift 1.5

% program -eps_type power -st_type sinvert
-eps_power_shift_type rayleigh

% program -eps_type arpack -eps_tol 1e-6
-st_type sinvert -st_shift 1
-st_ksp_type cgs -st_ksp_rtol 1e-8
-st_pc_type sor -st_pc_sor_omega 1.3



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

SVD: Basic Usage

Usual steps for solving an SVD problem with SLEPc:

1. Create an SVD object

2. Define the problem

3. (Optionally) Specify options for the solution

4. Run the solver

5. Retrieve the computed solution

6. Destroy the SVD object

All these operations are done via a generic interface, common to
all the SVD solvers



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

SVD: Simple Example

SVD svd; /* SVD solver context */
Mat A; /* matrix for A=USV^T */
Vec u,v; /* singular vectors */
PetscReal s; /* singular value */

SVDCreate(PETSC_COMM_WORLD, &svd);
SVDSetOperator(svd, A);
SVDSetFromOptions(svd);

SVDSolve(svd);

SVDGetConverged(svd, &nconv);
for (i=0; i<nconv; i++) {
SVDGetSingularTriplet(svd, i, &s, u, v);

}

SVDDestroy(svd);



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

SVD: Simple Example

SVD svd; /* SVD solver context */
Mat A; /* matrix for A=USV^T */
Vec u,v; /* singular vectors */
PetscReal s; /* singular value */

SVDCreate(PETSC_COMM_WORLD, &svd);
SVDSetOperator(svd, A);
SVDSetFromOptions(svd);

SVDSolve(svd);

SVDGetConverged(svd, &nconv);
for (i=0; i<nconv; i++) {
SVDGetSingularTriplet(svd, i, &s, u, v);

}

SVDDestroy(svd);



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

SVD: Simple Example

SVD svd; /* SVD solver context */
Mat A; /* matrix for A=USV^T */
Vec u,v; /* singular vectors */
PetscReal s; /* singular value */

SVDCreate(PETSC_COMM_WORLD, &svd);
SVDSetOperator(svd, A);
SVDSetFromOptions(svd);

SVDSolve(svd);

SVDGetConverged(svd, &nconv);
for (i=0; i<nconv; i++) {
SVDGetSingularTriplet(svd, i, &s, u, v);

}

SVDDestroy(svd);



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

SVD: Simple Example

SVD svd; /* SVD solver context */
Mat A; /* matrix for A=USV^T */
Vec u,v; /* singular vectors */
PetscReal s; /* singular value */

SVDCreate(PETSC_COMM_WORLD, &svd);
SVDSetOperator(svd, A);
SVDSetFromOptions(svd);

SVDSolve(svd);

SVDGetConverged(svd, &nconv);
for (i=0; i<nconv; i++) {
SVDGetSingularTriplet(svd, i, &s, u, v);

}

SVDDestroy(svd);



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

SVD: Simple Example

SVD svd; /* SVD solver context */
Mat A; /* matrix for A=USV^T */
Vec u,v; /* singular vectors */
PetscReal s; /* singular value */

SVDCreate(PETSC_COMM_WORLD, &svd);
SVDSetOperator(svd, A);
SVDSetFromOptions(svd);

SVDSolve(svd);

SVDGetConverged(svd, &nconv);
for (i=0; i<nconv; i++) {
SVDGetSingularTriplet(svd, i, &s, u, v);

}

SVDDestroy(svd);



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Details: Solving the Problem

SVDSolve(SVD svd)

Launches the SVD solver

Currently available SVD solvers:

I Cross-product matrix with any EPS eigensolver

I Cyclic matrix with any EPS eigensolver

I Golub-Kahan-Lanczos bidiagonalization with explicit restart
and deflation

I Golub-Kahan-Lanczos bidiagonalization with thick restart and
deflation



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Details: Problem Definition and Specification of Options

SVDSetOperators(SVD svd, Mat A)

Used for passing the matrix that constitutes the problem

SVDSetFromOptions(SVD svd)

Looks in the command line for options related to SVD

For example, the following command line
% program -svd_tol 1e-8 -svd_max_it 100

is equivalent to a call SVDSetTolerances(eps,1e-8,100)

SVDView(SVD svd, PetscViewer viewer)

Prints information about the object (equivalent to -svd view)



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Details: Problem Definition and Specification of Options

SVDSetOperators(SVD svd, Mat A)

Used for passing the matrix that constitutes the problem

SVDSetFromOptions(SVD svd)

Looks in the command line for options related to SVD

For example, the following command line
% program -svd_tol 1e-8 -svd_max_it 100

is equivalent to a call SVDSetTolerances(eps,1e-8,100)

SVDView(SVD svd, PetscViewer viewer)

Prints information about the object (equivalent to -svd view)



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Details: Problem Definition and Specification of Options

SVDSetOperators(SVD svd, Mat A)

Used for passing the matrix that constitutes the problem

SVDSetFromOptions(SVD svd)

Looks in the command line for options related to SVD

For example, the following command line
% program -svd_tol 1e-8 -svd_max_it 100

is equivalent to a call SVDSetTolerances(eps,1e-8,100)

SVDView(SVD svd, PetscViewer viewer)

Prints information about the object (equivalent to -svd view)



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Details: Viewing Current Options

Sample output of -svd view

SVD Object:

method: trlanczos

transpose mode: explicit

selected portion of the spectrum: largest

number of singular values (nsv): 1

number of column vectors (ncv): 10

maximum dimension of projected problem (mpd): 10

maximum number of iterations: 100

tolerance: 1e-07

Lanczos reorthogonalization: two-side

IP Object:

orthogonalization method: classical Gram-Schmidt

orthogonalization refinement: if needed (eta: 0.707100)



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

SVD: Run-Time Examples

% program -svd_view -svd_monitor

% program -svd_type lanczos -svd_nsv 6 -svd_ncv 24

% program -svd_type trlanczos -svd_tol 1e-8 -svd_max_it 2000

% program -svd_type cross -svd_eps_type krylovschur

% program -svd_type lapack

% program -svd_type lanczos -svd_monitor_draw

% program -svd_type trlanczos -svd_smallest



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Advanced Features



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Options for Subspace Generation

Initial Subspace

I Provide an initial trial subspace, e.g. from a previous
computation

I Current support only for a single vector (EPSSetInitialVector)

Deflation Subspace

I Provide a deflation space with EPSAttachDeflationSpace

I The eigensolver operates in the restriction to the orthogonal
complement

I Useful for constrained eigenproblems or problems with a
known nullspace



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Subspace Extraction

In some cases, convergence of the eigensolver may be very slow

→ Enhanced subspace extraction: try to extract better
approximations from the available subspace

I Harmonic extraction
I Compute harmonic Ritz values instead of Ritz values
I Useful for computing interior eigenvalues (alternative to the

spectral transformation)
I Currently implemented in Krylov-Schur solver

I Other: refined extraction



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Computation of Many Eigenpairs

By default, a subspace of dimension 2 · nev is used...
For large nev, this is not appropriate

I Excessive storage and inefficient computation

A Vm = Vm

Sm

b∗m+1

Strategy: compute eigenvalues in chunks - restrict the dimension
of the projected problem

% program -eps_nev 2000 -eps_mpd 300



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

SLEPc Highlights

I Growing number of eigensolvers

I Seamlessly integrated spectral transformation

I Support for SVD

I Easy programming with PETSc’s object-oriented style

I Data-structure neutral implementation

I Run-time flexibility, giving full control over the solution
process

I Portability to a wide range of parallel platforms

I Usable from code written in C, C++ and Fortran

I Extensive documentation



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

Future Directions

Under Development

I Generalized Davidson and Jacobi-Davidson solvers

I Enable computational intervals for symmetric problems

Mid Term

I Conjugate Gradient-type eigensolvers

I Non-symmetric Lanczos eigensolver

I Support for other types of eigenproblems: quadratic,
structured, non-linear



Introduction
Overview of SLEPc

Basic Usage
Advanced Features

More Information

Homepage:
http://www.grycap.upv.es/slepc

Hands-on Exercises:
http://www.grycap.upv.es/slepc/handson

Contact email:
slepc-maint@grycap.upv.es

http://www.grycap.upv.es/slepc
http://www.grycap.upv.es/slepc/handson
slepc-maint@grycap.upv.es

	Introduction
	Overview of SLEPc
	Basic Usage
	Eigenvalue Solvers
	Spectral Transformation
	SVD Solvers

	Advanced Features

