
 H. Zhang CS595 Overview, Page 1

Advanced
Scientific Computing

Fall 2010

 H. Zhang CS595 Overview, Page 2

Topics
Fundamentals:

–  Parallel computers (application oriented view)
–  Parallel and distributed numerical computation

•  MPI: message-passing library specification
•  PETSc: Portable, Extensible Toolkit for Scientific Computation

–  Numerical iterative techniques for solving large sparse
systems

–  Software design, analysis, implementation, performance
evaluation, …

Details:
 Your course project:

 discussion, programming, documentation, presentation,
and more…

 H. Zhang CS595 Overview, Page 3

Overview of Parallel Computing

 H. Zhang 4

What is Parallel Computing?
Serial Computations

•  Traditionally, software has been written for serial computation:
–  To be run on a single computer having a single Central Processing

Unit (CPU);
–  A problem is broken into a discrete series of instructions.
–  Instructions are executed one after another.
–  Only one instruction may execute at any moment in time.

 H. Zhang 5

What is Parallel Computing?
Parallel Computations

•  In the simplest sense, parallel computing is the simultaneous use of
multiple compute resources to solve a computational problem:
–  To be run using multiple CPUs
–  A problem is broken into discrete parts that can be solved concurrently
–  Each part is further broken down to a series of instructions
–  Instructions from each part execute simultaneously on different CPUs

 H. Zhang
6

Simple Example – summation of numbers

sum = 0
do i = 1,1000
 sum = sum + a(i)
enddo

mysum = 0
do i = mystart,myend
 mysum = mysum + a(i)
enddo
If(CPU 0)then
 do i = 1,4
 sum = sum + mysum
 enddo
endif

mysum

mysum

mysum

mysum

Total sum
 in CPU0

Proceed

0

1

2

3
Serial
computation

 H. Zhang 7

Requirements

•  The compute resources can include:
–  A single computer with multiple processors;
–  An arbitrary number of computers connected by a

network;
–  A combination of both.

•  The computational problems can be parallelized:
–  Broken apart into discrete pieces of work that can be solved

simultaneously;
–  …

•  Some problems are not non-parallelizable
–  calculation of the Fibonacci series

 (1,1,2,3,5,8,13,21,...) by F(n) = F(n-1) + F(n-2)

 H. Zhang CS595 Overview, Page 8

Parallel Computers
•  ~25 years ago

–  1*106 Floating Point Ops/sec (Mflop/s)
•  Scalar based

•  1993
–  58.7*109 Floating Point Ops/sec (Gflop/s)

•  Vector & shared memory computing
•  June 2008

–  478.2 TFlop/s (478.2*1012 Floating Point Ops/sec)
–  Highly parallel, distributed processing, message passing, network

based
–  Data decomposition, communication/computation

•  June 2010
–  1.759 Pflop/s (1.759*1015 Floating Point Ops/sec)
–  Many more levels memory hierarchy, combination/grids &HPC
–  More adaptive, Latency Tolerant and Bandwidth aware, fault

tolerant, extended precision, …

 H. Zhang CS595 Overview, Page 9

TOP 500 Machines: http://www.top500.org
Peak performance benchmark is not enough

Blue Waters (2011):
Enabling research and education with sustained petascale computing

- Blue Waters is expected to be one of the fastest supercomputers in the world
available for open scientific research when it comes online in 2011 at the
University of Illinois. An 8 year project with an overall cost of over $500M, it will
be the first system of its kind to sustain one petaflop performance on a range of
science and engineering applications.

- a joint effort of UIUC, NCSA, IBM, and the Great Lakes Consortium

Sustained petaflop performance on applications!

 H. Zhang 10

Applications (Science and Engineering)

•  Historically used for large scale problems in Science and
Engineering

•  Atmosphere, Earth, Environment
•  Physics - applied, nuclear, particle, condensed matter,

high pressure, fusion, photonics
•  Bioscience, Biotechnology, Genetics
•  Chemistry, Molecular Sciences
•  Geology, Seismology
•  Mechanical Engineering - from prosthetics to spacecraft
•  Electrical Engineering, Circuit Design, Microelectronics
•  Computer Science, Mathematics

 H. Zhang 11

Turbo machinery (Gas turbine/compressor)

Drilling application

Biology application

Astrophysics application

Transportation & traffic
application

 H. Zhang 12

Other applications (industry driven)
•  Commercial applications also provide a driving force in the

parallel computing. These applications require the processing of
large amounts of data

•  Databases, data mining
•  Oil exploration
•  Web search engines, web based business services
•  Medical imaging and diagnosis
•  Pharmaceutical design
•  Management of national and multi-national corporations
•  Financial and economic modeling
•  Advanced graphics and virtual reality, particularly in the

entertainment industry
•  Networked video and multi-media technologies

 H. Zhang 13

Weather modeling New materials

Drug discovery

Advanced Graphics

 H. Zhang CS595 Overview, Page 14

Goal of Parallel Computing

•  Solve larger problems faster
•  Often larger is more important than faster
•  P-fold speedups not as important!

Challenge of Parallel Computing:
Coordinate, control, and monitor the computation

 H. Zhang CS595 Overview, Page 15

Aspects of Parallel Computing

•  Architectures:
–  Processors and memories connected together
–  Memory hierarchy

•  Software:
–  Operating systems, compilers
–  Libraries
–  Tools – debuggers, performance analysis

•  Algorithms and Programming:
–  Solve large scale problems on parallel computers

 H. Zhang CS595 Overview, Page 16

Architecture

•  Basic components of any architecture:
–  Processors and memory (processing units)
–  Interconnect

•  Logic classification based on:
–  Control mechanism (Flynn’s Taxonomy)

•  SISD (Single Instruction Single Datastream)
•  SIMD (Single Instruction Multiple Datastream)
•  MISD (Multiple Instruction Single Datastream)
•  MIMD (Multiple Instruction Multiple Datastream)

–  Address space organization
•  Shared Address Space
•  Distributed Address Space

 H. Zhang 17

Concepts and Terminology
•  Basic computer comprised of

–  Memory
–  CPU
–  Input/Output

•  memory is used to store both program
instructions and data

•  Control unit fetches instructions/data from
memory, decodes the instructions and
then sequentially coordinates operations
to accomplish the programmed task.

•  Arithmetic Unit performs basic arithmetic
operations

•  Input/Output is the interface to the human
operator

 H. Zhang 18

Classification of Parallel Computers
•  distinguishes multi-processor computer architectures

according to Instruction and Data (called Flynn's
Classical Taxonomy).

S I S D
Single Instruction, Single

Data

S I M D
Single Instruction, Multiple

Data

M I S D
Multiple Instruction,

Single Data

M I M D
Multiple Instruction,

Multiple Data

 H. Zhang 19

Single Instruction, Single Data (SISD)
•  A serial (non-parallel) computer
•  Single instruction: only one instruction

stream is being acted on by the CPU
during any one clock cycle

•  Single data: only one data stream is
being used as input during any one clock
cycle

•  Deterministic execution
•  This is the oldest and even today, the

most common type of computer
•  Examples: older generation mainframes,

minicomputers and workstations; most
modern day PCs.

 H. Zhang 20

Single Instruction, Multiple Data (SIMD)
•  Single instruction: All

processing units execute the
same instruction at any given
clock cycle

•  Multiple data: Each processing
unit can operate on a different
data element

•  Best suited for specialized
problems characterized by a
high degree of regularity, such
as graphics/image processing.

•  Synchronous (lockstep) and
deterministic execution

•  Graphics processor units
(GPUs) employ SIMD

 H. Zhang 21

Multiple Instruction, Single Data (MISD)
•  A single data stream is fed into

multiple processing units.
•  Each processing unit operates on

the data independently via
independent instruction streams.

•  Few actual examples of this class
of parallel computer have ever
existed. Some conceivable uses
might be:
–  multiple frequency filters

operating on a single signal
stream

–  multiple cryptography
algorithms attempting to crack
a single coded message.

 H. Zhang 22

Multiple Instruction, Multiple Data (MIMD)
•  Most modern computers fall into

this category.
•  Multiple Instruction: every

processor may be executing a
different instruction stream

•  Multiple Data: every processor may
be working with a different data
stream

•  Execution can be synchronous or
asynchronous, deterministic or non-
deterministic

•  Examples: most current
supercomputers, networked parallel
computer clusters, multi-processor
SMP computers, multi-core PCs.

 H. Zhang 23

Common terminology
•  Task

–  A logically discrete section of computational work. A task is
typically a program or program-like set of instructions that is
executed by a processor (eg. Loop, function, subroutine etc).

•  Serial Execution
–  Execution of a program sequentially, one statement at a time. In

the simplest sense, this is what happens on a one processor
machine. However, virtually all parallel tasks will have sections
of a parallel program that must be executed serially.

•  Parallel Execution
–  Execution of a program by more than one task, with each task

being able to execute the same or different statement at the
same moment in time.

 H. Zhang 24

Common terminology (cont’d)
•  Shared Memory

–  Hardware sense - computer architecture where all processors
have direct (usually bus based) access to common physical
memory.

–  Programming sense - model where parallel tasks all have the
same "picture" of memory and can directly address and access
the same logical memory locations regardless of where the
physical memory actually exists.

 H. Zhang 25

Common terminology (cont’d)
•  Distributed Memory

–  Hardware sense - refers to network based memory access for
physical memory that is not common.

–  Programming model sense - tasks can only logically "see" local
machine memory and must use communications to access
memory on other machines where other tasks are executing.

 H. Zhang 26

Hybrid Distributed-Shared Memory

•  The largest and fastest
computers in the world
today employ both
shared and distributed
memory architectures

•  Current trends seem to
indicate that this type of
memory architecture will
continue to prevail and
increase at the high end
of computing for the
foreseeable future.

 H. Zhang CS595 Overview, Page 27

Intel Xeon Memory Architecture

L2 Cache

CPU

L1 Cache L1 Cache

Processor 1

Core 1 Core 2

CPU

L2 Cache

CPU

L1 Cache L1 Cache

Processor 2

Core 1 Core 2

CPU

System Bus System Memory

 H. Zhang CS595 Overview, Page 28

AMD Opteron Memory Architecture

Core 1 Core 2

L2 Cache

L1 Cache L1 Cache

L2 Cache

SRQ SRQ

Cross Bar

MCT

H
T

H
T

H
T

Local Memory

Core 1 Core 2

L2 Cache

L1 Cache L1 Cache

L2 Cache

SRQ SRQ

Cross Bar

MCT

H
T

H
T

H
T

Local Memory

 H. Zhang 29

Parallel Computer Memory Architectures
•  Shared Memory
•  Have the ability for all

processors to access all
memory as global address
space.

•  Multiple processors can
operate independently but
share the same memory
resources.

•  Changes in a memory
location effected by one
processor are visible to all
other processors.

 H. Zhang 30

Shared Memory Architecture
•  Advantages:

–  Global address space provides a user-friendly programming
perspective to memory

–  Data sharing between tasks is both fast and uniform due to
the proximity of memory to CPUs

•  Disadvantages:
–  Primary disadvantage is the lack of scalability between

memory and CPUs. Adding more CPUs can geometrically
increases traffic on the shared memory-CPU path, and for
cache coherent systems, geometrically increase traffic
associated with cache/memory management.

–  Programmer responsible for synchronization constructs that
ensure "correct" access of global memory.

–  Expense: it becomes increasingly difficult and expensive to
produce shared memory machines with increasing number of
processors (chip design standpoint).

 H. Zhang CS595 Overview, Page 31

Shared Address Space

•  Shared address space:
–  Processors can directly access all the data in the system

Processing Unit

Processing Unit

Processing Unit
Memory

object

 H. Zhang 32

Distributed Memory
•  Distributed memory systems require a communication

network to connect inter-processor memory.
  Processors have their own local

memory. Memory addresses in
one processor do not map to
another processor, so there is no
concept of global address space
across all processors

  Each CPU operates
independently. Changes it makes
to its local memory have no effect
on the memory of other
processors. Hence, the concept of
cache coherency does not apply.

  Getting access to data in another
processor is programmer’s
responsibility. So is
synchronization between tasks.

 H. Zhang 33

Distributed Memory
•  Advantages:

–  Memory is scalable with number of processors. Increase the
number of processors and the size of memory increases
proportionately.

–  Each processor can rapidly access its own memory without
interference and without the overhead incurred with trying to
maintain cache coherency.

–  Cost effectiveness: can use commodity, off-the-shelf
processors and networking.

•  Disadvantages:
–  The programmer is responsible for many of the details

associated with data communication between processors.
–  It may be difficult to map existing data structures, based on

global memory, to this memory organization.

 H. Zhang CS595 Overview, Page 34

Private Address Space

•  Distributed address space:
–  “Shared nothing:” each processor has a private memory
–  Processors can directly access only local data

Processing Unit

Processing Unit

Processing Unit

object
memory

object
memory

object
memory

messages

 H. Zhang
35

Common terminology (cont’d)

•  Communications
–  Data exchange between parallel tasks

•  Accomplished through shared memory bus or over a
network

•  Synchronization
–  The coordination of parallel tasks in real time

•  Very often associated with communications.
•  Often implemented by establishing a

synchronization point within an application where a
task may not proceed further until another task(s)
reaches the same or logically equivalent point.

 H. Zhang CS595 Overview, Page 36

Aspects of Parallel Computing

•  Architectures:
–  Processors and memories connected together
–  Memory hierarchy

•  Software:
–  Operating systems
–  Compiler
–  Libraries
–  Tools – debuggers, performance analysis

•  Algorithms and Programming:
–  Solve large scale problems on parallel computers

 H. Zhang CS595 Overview, Page 37

Registers

 Cache

Main Memory

Magnetic Disk

Magnetic Tape

 Contemporary memory hierarchy

Disk Cache

Optical Disk

Memory Hierarchy
0.25ns

1ns

100ns

5ms

100s

<1KB

1MB

512MB –10GB

40MB-400GB

20GB-1TB

 H. Zhang CS595 Overview, Page 38

Aspects of Parallel Computing

•  Architectures:
–  Processors and memories connected together
–  Memory hierarchy

•  Software:
–  Operating systems
–  Compiler
–  Libraries
–  Tools – debuggers, performance analysis

•  Algorithms and Programming:
–  Solve large scale problems on parallel computers

 H. Zhang CS595 Overview, Page 39

Operating Systems

•  Need to support tasks similar to serial OS like
Unix
–  Memory and process management, file

systems,security
•  Additional support needed:

–  Job scheduling: time shared, space sharing
–  Parallel programming support: message passing,

synchronization

 H. Zhang CS595 Overview, Page 40

Compilers

•  Automatic parallelization

•  Implicit parallel programming
–  Vector processing
–  Instruction-level parallelism
–  …

•  Explicit parallel programming

 H. Zhang CS595 Overview, Page 41

Libraries
•  Make using parallel machines easier
•  Library implementations are usually done by skilled

and experienced programmers working closely with
machine designers resulting in high levels of
performance

•  Library routines can be used as building blocks for
complex applications

•  Usually cover certain specialized application domains

•  Examples: PETSc
 http://www.mcs.anl.gov/petsc

•  Distributed environment: MPI
 http://www.mcs.anl.gov/mpi

 H. Zhang CS595 Overview, Page 42

Tools
•  Essential due to degree of complexity in implementation

•  Examples:
–  Performance analyzers

•  Help in identifying bottlenecks
•  Can identify relative importance of different parts of program

with respect to possible performance gains

–  Debugger:
•  Need to capture the state of multiple processes
•  Bugs commonly caused by synchronization errors are difficult

to capture

–  Source control management:
•  Mercurial (http://mercurial.selenic.com/)

 H. Zhang CS595 Overview, Page 43

Aspects of Parallel Computing

•  Architectures:
–  Processors and memories connected together

•  Software:
–  Operating systems
–  Compiler
–  Libraries
–  Tools – debuggers, performance analysis

•  Algorithms and Programming:
–  Solve large scale problems on parallel computers

 H. Zhang 44

Parallel Programming Models
•  Users must choose a proper parallel programming model to develop their

applications on a particular platform.

A parallel programming model
•  defines how the programmer creates and coordinates parallel tasks
•  is a set of software technologies to express parallel algorithms

–  match applications with the underlying parallel systems.
–  encompasses the applications, programming languages, compilers,

libraries, communication systems, parallel I/O, ….

Commonly used parallel programming models:
–  shared memory, threads, message passing, data parallel, hybrid

 H. Zhang 45

Steps to be taken in parallel programming

•  Understand the application
–  determine whether or not the problem can be parallelized. For

example, calculation of the Fibonacci series
(1,1,2,3,5,8,13,21,...) by use of the formula: F(k + 2) = F(k + 1)
+ F(k) is not parallelizable

•  Identify the program's hotspots
–  Know where most of the real work is being done. The majority

of scientific and technical programs usually accomplish most of
their work in a few places.

–  Profilers and performance analysis tools can help here
–  Focus on parallelizing the hotspots and ignore those sections of

the program that account for little CPU usage.

 H. Zhang 46

Steps to be taken in parallel programming
  Identify bottlenecks in the program

–  Are there areas that are disproportionately slow, or cause parallelizable
work to halt or be deferred? For example, I/O is usually something
that slows a program down.

–  May be possible to restructure the program or use a different algorithm
to reduce or eliminate unnecessary slow areas of the program that
account for little CPU usage. Identify inhibitors to parallelism. One
common class of inhibitor is data dependence

  Identify inhibitors to parallelism. One common class of inhibitor is data
dependence ….eg: A(J) = A(J-1) * 2.0

  Investigate other algorithms if possible.
–  iterative methods for solving large sparse linear equations Ax = b are

more amenable to parallelization. The same is not generally true for
direct solvers.

 H. Zhang 47

Considerations in Parallel Programming
•  Partitioning

–  breaking the problem into discrete "chunks" of work
that can be distributed to multiple tasks.

–  Domain decomposition most commonly used. Data
associated with a problem is decomposed

 H. Zhang 48

Considerations … (cont’d)
•  Load Balancing

–  Load balancing refers to the practice of distributing work among
tasks so that all tasks are kept busy all of the time

•  Communications between processors
–  Embarrassingly parallel:

 Little effort is required to separate the problem into parallel tasks
(eg., Image processing)

–  Data dependency:
 Most problems require tasks to share data with each other.
Changes to neighboring data has a direct effect on that task's
data (eg. T(i) = (T(i-1) + T(i+1))/2)

–  Communication cost, Latency vs. Bandwidth, Synchronization,…

 H. Zhang 49

Considerations … (cont’d)
•  Speedup and Scalability

–  Affected by algorithm, hardware (memory CPU bus bandwidth,
communication network, memory available/CPU etc)

–  Limits: Amdahl’s law (potential speed up dependent on fraction
of code that can be parallelized)

•  Performance Analysis and Tuning
–  debugging, monitoring and analyzing parallel program execution

is significantly more of a challenge than for serial programs.
–  Various tools available

•  Portability
–  Affected by hardware architecture of the platform,

implementation of APIs, operating systems etc.
•  I/O

–  Inhibitors to parallelism, parallel file systems available

 H. Zhang 50

Parallel Example – (Array processing)

•  2-dimensional array element
•  Each element independent of others

do j = 1,n
 do i = 1,n
 a(i,j) = fcn(i,j)
 end do
end do

 H. Zhang 51

Parallel Example – (Array processing Implementation)

•  Pseudo code shown below

–  Master process initializes array, sends info to worker processes
and receives results.

–  Worker process receives info, performs its share of computation
and sends results to master.

–  Using the Fortran storage scheme, perform block distribution of the
array.

 H. Zhang 52

find out if I am MASTER or WORKER
 If I am MASTER
 initialize the array
 send each WORKER info on part of array it owns
 send each WORKER its portion of initial array
 receive from each WORKER results
 else if I am WORKER
 receive from MASTER info on part of array I own
 receive from MASTER my portion of initial array #
 calculate my portion of array
 do j = my first column,my last column
 do i = 1,n
 a(i,j) = fcn(i,j)
 end do
 end do
 send MASTER results
 endif

Implementation

 H. Zhang 53

Homework 1
http://blackboard.iit.edu/

