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Preview

Suppose you are asked to describe the “typical” college
student in the United States. For example, what is the
mean age for this population? On the average, how many
hours of sleep do they get each night? What is the mean
number of times they have pizza per month? What is the
mean amount of time spent studying per week? Notice that
we are asking questions about values for population pa-
rameters (imean age, mean hours of sleep, and so on). Of
course, the population of college students in the United
States is large—much too large and unmanageable to study
in its entirety.

When you attempt to describe the typical college stu-
dent, you probably will take a look at students you know
on your campus. From this group, you can begin to de-
scribe what the population of college students might be
like. Notice that you are starting with a sample (the stu-
dents you know) and then you are making some general
statements about the population. For example, the mean
age is around 21, the mean number of pizzas ordered per
month is 10, the mean amount of time spent studying per

week is 16 hours, and so on. The process of using sample
data to estimate the values for population parameters is
called estimation. It is used to make inferences about un-
known populations and often serves as a follow-up to
hypothesis tests,

As the term estimation implies, the sample data provide
values that are only approximations (estimates) of the
population parameters. Many factors can influence these
estimates. One obvious factor is sample size. Suppose that
you knew only two other students. How might this affect
your estimate? What if you knew 100 other students to use
in making your estimates? Another factor is the type of
estimate used. Instead of estimating the popunlation mean
age of students at precisely 21, why not estimate the mean
to be somewhere in the interval between 20 and 23 years?
Notice that by using an interval you have made your esti-
mate allowing for a margin of error. Accordingly, you can
be more certain that your estimate contains the population
parameter, [n this chapter, we address these and many
other questions as we closely examine the process of
estimation.

EAN OVERVIEW OF ESTIMATION

DEFINITION

In Chapter 8, we intreduced hypothesis testing as a statistical procedure that allows re-
searchers to use sample data to draw inferences about populations. Hypothesis testing
is probably the most frequently used inferential technique, but it is not the onty one. In
this chapter, we examine the process of estimation, which provides researchers with an
addifional method for using samples as the basis for drawing general conclusions about
populations.

The basic principle underlying all of inferential statistics is that samples are repre-
sentative of the populations from which they come. The most direct application of this
principle is the use of sample values as estimators of the corresponding population val-
ues—that is, using statistics to estimate parameters. This process is called estimation.

—

The inferential process of using sample statistics to estimate population parame-
ters 1s called estimation.

e —

The use of samples to estimate populations is quite common. For example, you oft

hear news reports such as “Sixty percent of the general public approves of the pres
dent’s new budget plan.” Clearly the percentage that is reported was obtained fro
sample (they don’t ask everyone’s opinion), and this sample statistic is being used
an estimate of the population parameter. -

We already have encountered estimation in earlier sections of this book. For X2 '5

pie, the formula for sample variance (Chapter 4) was developed so that the sample VAE
would give an accurate and unbiased estimate of the population variance. Now WESS
amine the process of using sample means as the basis for estimating population Mmes:
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PRECISION AND Before we begin the actual process of estimation, a few general points should be kept
CONFIDENCE IN  in mind. First, a sample will not give a perfect picture of the whole population. A sam-
ESTIMATION ple is expected to be representative of the population, but there always will be some dif-
ferences between the sample and the entire population. These differences are referred
to as sampling error. Second, there are two distinct ways of making esttmates. Suppose,
for example, you are asked to estimate the age of the authors of this book. If you look
in the frommatter of the book, just before the Contents, you will find pictures of
Gravetter and Wallnau. We are roughly the same age, so pick either cne of us and es-
timate how old we are. Note that you could make your estimate using a single value (for
example, Gravetter appears to be 55 years old) or you could use a range of values (for
example, Wallnau seems to be between 50 and 60 years old). The first estimate, using
a single number, is called a point estimate.

DEFINITION For a point estimate, you use a single number as your estimate of an unknown
quantity.

Point estimates have the advantage of being very precise; they specify a particular

value. On the other hand, you generally do not have much confidence that a point esti-

mate is correct. For example, most of you would not be willing to bet that Gravetter is
exactly 55 years old.

I The second type of estimate, using a range of values, is called an interval estimate.
Interval estimates do not have the precision of point estimates, but they do give you more
confidence. For example, it would be reasonably safe for you to bet that Wallnau is be-
tween 40 and 60 years old. At the extreme, you would be very confident betting that
Wallnau is between 20 and 70 years old. Note that there 1s a trade-off between precision
and confidence. As the interval gets wider and wider, your confidence grows. At the
sare time, however, the precision of the estimate gets worse. We will be vsing samples
to make both point and interval estimates of a population mean. Because the interval es-
timates are associated with confidence, they usually are called confidence intervals.

| -

DEFINITIONS For an interval estimate, you use a range of values as your estimate of an un-
known guantity.

When an interval estimate is accompanied by a specific level of confidence (or
probability), it is called a confidence interval. ) |

Estimation is used in the same general situations in which we have already used hy- |.
I pothesis testing. In fact, there is an estimation procedure that accompanies each of the
1 hypothesis tests we presented i the preceding chapters. Figure 12.1 shows an example
of a research sitnation in which either hypothesis testing or estimation could be used.
The figure shows a population with an unknown mean (the population after treatment).
A sample is selected from the unknown population. The goal of estimation is to use the
sarmple data to obtain an estimate of the unknown population mean.

COMPARISON OF  You should recognize that the situation shown in Figure 12.1 is the same situation in
HYPOTHESIS TESTS  which we have used hypothesis tests in the past. In many ways, hypothesis testing and
AND ESTIMATION  estimation are similar, They both make use of sample data and either z-scores or ¢ sta-
tistics to find out about unknown populations. But these two inferential procedures are
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FIGURE 12.1

The basic research situation
for either hypothesis testing
or estimation. The goal is to
use the sample data to an-
swer questions about the
unknown population mean
after treatment.
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WHEN TO USE ESTIMATION

THE LOG!C OF ESTIMATION

designed to answer different questions. Using the situation shown in Figure 12.1 as an
example, we could use a hypothesis test to evaluate the effect of the treatment. The test
would determine whether the treatment has any effect. Notice that this is a yes-no ques-
tion. The null hypothesis says, “No, there is no treatment effect.” The alternative hy-
pothesis says, “Yes, there is a treatment effect.”

The goal of estimation, on the other hand, is to determine the value of the popula-
tion mean after treatment. Essentially, estimation will determine Aow much effect the

treatment has (Box 12.1). If, for example, we obtained a point estimate of u = 38 for
the population after treatment, we could conclude that the effect of the treatment is to

increase scores by an average of 8 points (from the original mean of p = 30 to the post-
treatment mean of p. = 38).

There are three situations in which estimation commonly is used:

1. Estimation is used after a hypothesis test when Hy, is rejected. Remember that
when Hy 1s rejected, the conclusion is that the treatment does have an effect.
The next logical question would be, How much effect? This is exactly the ques-
tion that estimation is designed to answer.

2. Estimation is used when you already know that there is an effect and simply

want to find out how much. For exarple, the city school board probably knows

that a special reading program will help students. However, they want to be
sure that the effect is big enough to justify the cost. Estimation is used to deter-
mine the size of the treatment effect.

3. Estimation is used when you simply want some basic information about an

unknown population. Suppose, for example, you want to know about the politi=

cal attitudes of students at your college, You could use a sample of students as
the basis for estimating the population mean.

known population. More specifically, a researcher begins with a question abol
. . B : ik
unknown population parameter. To answer the question, a sample Is obtained, "’ﬂl

As we have noted, estimation and hypothesis testing are both inferential statistical tet h-
niques that involve using sample data as the basis for drawing conclusions about atl 15
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m HYPOTHESIS TESTING VERSUS ESTIMATION: STATISTICAL SIGNIFICANCE

VERSUS PRACTICAL SIGNIFICANCE

As we already noted, hypothesis tests tend to involve a
yes-no decision. Either we decide to reject H,, or we
fail to reject H,. The language of hypothesis testing
reflects this process. The outcome of the hypothesis test
is one of two conclusions:

There is no evidence for a treatment effect (fail to
reject Hy)

or

There is a statistically significant effect (Hy 1s
rejected)

For example, a researcher studies the effect of a new
drug on people with high cholesterol, In hypothesis
testing, the question is whether or not the drug has a
significant effect on cholesterol levels. Suppose the
hypothesis test revealed that the drug did produce a
significant decrease in cholesterol. The next question
might be, How much of a reduction occurs? This ques-
tion calls for estimation, in which the size of a treatment
effect for the population is estimated.

Estimation can be of great practical importance be-
cause the presence of a “statistically significant” effect
does not necessarily mean the results are large enough
for use in practical applications. Consider the following
possibility: Before drug treatiment, the sample of pa-
tients had a mean cholesterol level of 225. After drug
treatment, their cholesterol reading was 210. When

. analyzed, this 15-point change reached statistical signif-

icance (H, was rejected). Aithough the hypothesis test
revealed that the drug produced a statistically signifi-
canf change, it may not be clinically significant. That is,
a cholesterof level of 210 is still quite high. In estima-
tion, we would estimate the population mean cholesterol
level for patients who are treated with the drug. This
estimated value may reveal that even though the drug
does 1n fact reduce cholestero] levels, it does not pro-
duce a large enough change (notice we are looking at a
“how much” question) to make it of any practical value.
Thus, the hypothesis test might reveal that an effect
occurred, but estimation indicates it is small and of little
practical significance in real-world applications.

| tistics to help answer questions about population parameters. The general logic under-
| lying the processes of estimation and hypothesis testing is based on the fact that each
population parameter hag a corresponding sample statistic. In addition, you usually can
compute a standard error that measures how much discrepancy is expected, on average,
| between the statistic and the parameter. For example, a sample mean, M, corresponds ;'
to the population mean, ., with a standard error measured by o,y or 5, : }

|
I sample statistic is computed. In general, statistical inference involves using sample sta- 4

In the preceding four chapters we presented four different situations for hypothesis
testing: the z-score test, the single-sample 4, the independent-measures ¢, and the re-
peated-measures £. Although it is possible to do estimation in each of these four situa-
tions, we will only consider estimation for the three  statistics. Recall that the general
structure of a t statistic is as follows: |

sample mean __ population mean
- {or mean difference)  (or mean difference)

estimated standard error 1
I’

This general formula is used both for hypothesis testing and for estimation. In each
case, the population mean (or mean difference) is unknown. The purpose for a hy-
pothesis test is to evaluate a hypothesis about the unknown population parameter. The




364

CHAPTER 12 ESTIMATION

purpose for estimation is 10 determine the value for the unknown population param-
eter. Because hypothesis testing and estimation have different goals, they will follow
different logical paths. These different paths are outlined as follows:

Hypothesis Test

Estimation

Goal: To test a hypothesis about a population  Goal: To estimate the vatue of an unknown

parameter—usually the null hypothesis, population parameter—usually the value for
which states that the treatment has no effect. an unknown population mean.
A. For a hypothesis test, you begin by hy- A. For estimation, you do nat attempt to

pothesizing a value for the unknown
population parameter. This value is speci-
fied in the mull hypothesis.

B. The hypothesized value is substimted into
the formula, and the value for ¢ is com-
puted.

C. If the hypothesized value produces a

“reasonable” value for £, we conclude that B.

the hypothesis was “reascnable,” and we
fail o reject Hy. If the result is an extreme
value for ¢, Hy is rejected.

D. A “reasonable” vatue for ¢ is defined by C.

its Jocation in a distribution. In general,
“reascnable” values are high-probability

outcomes in the center of the distribution. D.

Extreme values with low probability are
considered “unreasonable” (Figure 12.2).

calculate 1. Instead, you begin by estimat-
ing what the 7 value cught to be. The
strategy for making this estimate is to
select a “reasonable” value for £. (Note:
You are not just picking a value for f,
rather, you are estimating where the sam-
ple is located in the distribution.)

As with hypothesis testing, a “reasonable”
value for ¢ is defined as a high-probability
outcome located near the center of the
distribution (see Figure 12.2).

The “reasorable” value for ¢ is substituted
into the formula, and the value for the un-
known population parameter is computed.
Because you used a “reascnable” value
for 7 in the formula, it is assumed that the
computation wilf produce a “reasonable”
estimate of the population parameter.

Because the goal of the estimation process is to compute a value for the unknown
population mean or mean difference, it usually is easier to regroup the terms in the £ for-
mula so that the population value is isolated on one side of the equation. In algebraic

FIGURE 12.2

For estimation or hypothesis
testing, the distribution of r
statistics i1s divided into two
sections: the middle of the

distribution, consisting of Exireme Extreme
high-probability ontcomes low-probability —— low-probability
that are considered “reason- oulcomes oufcomes
able,” and the extreme tails
of the distribution, consisting ]

! t

of low-probability, “unrea-
sonable” outcomes.

High-protzalility
outcomes for 1
“reasonable” values
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terms, we are solving the equation for the unknown population parameter. The result
takes the following form:

population mean _ sample mean

= + 1
(or mean difference)  (or mean difference) — {(estimated standard error)

(12.1)

This is the general equation that we will use for estimation. Consider the following two
points about Equation 12.1:

1. On the right-hand side of the equation, the values for the sample mean and the
estimated standard error can be computed directly from the sample data. Thus,
only the value of 7 is unknown. If we can determine this missing value, then we
can use the equation to calculate the unknown population mean.

2. Although the specific value for the ¢ statistic cannot be determined, we do know
what the entire distribution of f statistics looks like. We can use the distribution
to estimate what the ¢ statistic ought to be.

a. For a point estimate, the best bet is to use ¢ = 0, the exact center of the
distribution. There is no reason to suspect that the sample data are biased
(either above average or below average), so ¢ = 0 is a sensible value. Also,
t = 0 is the most likely value, with probabilities decreasing steadily as you
move away from zero toward the tails of the distribution.

b. For an interval estimate, we will use a range of ¢ values around zero. For
example, to be 90% confident that our estimation is correct, we will simply
use the range of ¢ values that forms the middle 90% of the distribution. Note
that we are estimating that the sample data correspond to a ¢ statistic some-
where in the middle 90% of the ¢ distribution.

Once we have estimated a value for 7, then we have all the numbers on the right-hand
side of the equation and we can calculate a value for the unknown population mean.
Because one of the numbers on the right-hand side is an estimated value, the popula-
tion mean that we calculate is afsc an estimated value.

1. Estimation is used to determine whether or not a treatment effect exists. (True or
false?)

2. Estimation is primarily used to estimate the value of sample statistics. (True or
false?)

3. In general, as confidence increases, the precision of an interval estimate decreases.
{True or false?)

4. Explain why it would nof be sensible to use estimation after a hypothesis test in
which the decision was “fail to reject the null hypothesis.”

—

. False. Estimation is used to determine how much effect the treatment has.

2. False. Estimation procedures are used to estimate the value for unknown population parame-
ters.

3. True. There is a trade-off between precision and confidence.

4. If the decision is fail to reject Hy, ther you have concluded that there is not a significant
treatment effect. In this case, it would not make sense to estimate how much effect there is.
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E:ESTIMATION WITH THE ¢ STATISTIC

ESTIMATION OF . FOR
SINGLE-SAMPLE STUDIES

EXAMPLE 12.1

In the preceding three chapters, we introduced three different versions of the r statistic:
the single-sample ¢ in Chapter 9, the independent-measures ¢ in Chapter 10, and the re-
peated-measures ¢ in Chapter 11. Although the three ¢ statistics were introduced in the
context of hypothesis testing, they all can be adapted for use in estimation. As we saw
in the previous section, the general form of the ¢ equation for estimation is as follows:

population mean _  sample mean
{or mean difference)  (or mean difference) — (estimated standard error) 4'

With the single-sample ¢, we will estimate an unknown population mean, ., using a
sample mean, M. The estimation formula for the single-saraple 7 is

=M= tSar (122)

With the independent-measures ¢, we will estimate the size of the difference between
two population means, g, — oy, using the difference between two sample means,
M, — M,. The estimation formula for the independent-measures 7 is

B = Pe =My~ My & 1500 ) (12.3)

Finally, the repeated-measures ¢ statistic will be used to estimate the mean difference
for the general population, p.p, using the mean difference for a sample, Mp. The esti-
mation formula for the repeated-measures ¢ is

Ko = MD + ISMD (12.4)

To use the ¢ statistic formulas for estimation, we must determine all of the values on
the right-hand side of the equation (including an estimated value for £) and then use
these numbers to compute an estimated value for the population mean or mean differ-
ence. Specifically, you first compute the sample mean {or mean difference) and the es-
timated standard error from the sample data. Next, you estimate a value, or a range of
values, for . More precisely, you are estimating where the sample data are located m
the ¢ distribution. These values complete the right-hand side of the equation and allow
you to compute an estimated value for the mean {or the mean difference). The follow-
ing examples demonstrate the estimation procedure with each of the three ¢ statistics.

In Chapter 9, we introduced single-sample studies and hypothesis testing with the 7 sta-
tistic. Now we will use a single-sample study to estimate the value for w, using pcimi
and interval estimates.

For several years researchers have noticed that there appears to be a regular, year-by- l
year increase in the average IQ for the general population. This phenomenon is called
the Flynn effect after the researcher who first reported it (Flynn, 1984, 1999), and 1t
means that psychologists must continuously update 1Q) tests to keep the population
mean at g = 100. To evaluate the size of the effect, a researcher obtained a 10-year

old 1Q test that was standardized to produce a mean IQ of . = 100 for the populall 5
10 years ago. The test was then given to a sample of 7 = 64 of today’s 20-year-oid
adults. The average score for the sample was M = 107 with a standard deviation of

§ = 12. The researcher would like to use the data to estimate how much IQ scores
have changed during the past 10 years. Specifically, the researcher would like t@
make a point estimate and an 80% confidence interval estimate of the populatiod
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How much cifference?

IQ scores for the
population 10 years ago

I scores for today's
population using a test
frorm 10 years ago

Sarmple of n = 64 students
M =107 withs = 12

FIGURE 12.3

The structure of the research study described in Example 12.1. The goal is to use the sample to
estimate the population mean I( for students taking a 10-year-old test. We can then estimate how
much IQ scores have changed during the past 10 years,

mean for people taking a 10-year-old IQ test. The structure for this research study is
shown in Figure 12.3.

In this example, we are using a single sample to estimate the mean for a single
population. In this case, the estimation formula for the single-sample ¢ is

| M:MiISM

' To use the equation, we must first compute the estimated standard error and then
| determine the estimated value(s) to be used for the ¢ statistic.

Compute the estimated standard error, s,, To compute the estimated standard
error, 1t is first necessary to calculate the sample variance. For this example, we are
given a sample standard deviation of s = 12, so the sample variance is s> = (12)* =
144. The estimated standard error is

st 144 12
SM_\/;_\Jm_ g — 10

The point estimate As noted earlier, a point estimate involves selecting a single
value for ¢. Because the ¢ distribution is always symmetrically distributed with a mean
of zero, we will always use ¢ = 0 as the best choice for a point estimate. Using the
sample data and the estimate of t = 0, we obtain

w=M= 5y

107 £ 0(1.50)
= 107
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This is our point estimate of the population mean. Note that we simply have used
the sample mean, M, to estimate the population mean, w. The sample is the only in-
formation that we have about the population, and it provides an unbiased estimate of
the population mean (Chapter 7, page 202). That is, on average, the sample mean
provides an accurate representation of the population mean. Based on this point esti-
mate, our conclusion is that today’s population would have a mean IQ of . = 107 on
an IQ test from 10 years ago. Thus, we are estimating that there has been a 7-point
increase in IQ scores (from p = 100 to . = 107) during the past decade.

ﬂ To have 80% in the middle there  The interval estimate For an interval estimate, select a range of ¢ values that is de-

must be 20% (or .20) in the tails.  termined by the level of confidence. In this example, we want 80% confidence in our

To find the £ values, look under  estimate of . Therefore, we will estimate that the ¢ statistic is Jocated somewhere in

two tails, .20 in the 7 table. the middle 80% of the ¢ distribution. With df = n — 1 = 63, the middle 80% of the dis-

tribution is bounded by ¢ values of +1.296 and —1.296 (using df = 60 from the table).

! These values are shown in Figure 12.4. Using the sample data and this estimated range

| ’ of  values, we obtain
|
i
j

=M * () = 107 £ 1.296(1.50) = 107 £ 1.944

FIGURE 12.4 df= &0

. The 80% confidence interval p=0.20in two tails
with df = 60 is constructed

' using ¢ values of 1 = —1.296
and t = +1.296. The ¢ values

are obtained from the table

t
| using 20% (0.20) as the - Middie 80% of

) e dﬁh‘]buhoh
proportion remaining in the :
two tails of the distribution. -1.296 +1.296

-

end of the interval we obtain 105.056 (107 — 1.944). Our conclusion is that today’s
population would have a mean IQ between 105.056 and 108.944 if they used an

| IQ test from 10 years ago. In other words, we are concluding that the mean IQ has

|i increased over the past 10 years, and we are estimating with 80% confidence that the
size of the increase is between 5 and 9 points. The confidence comes from the fact
that the calculation was based on only one assumption. Specifically, we assumed that:
the ¢ statistic was located between +1.296 and —1.296, and we are 80% confident
that this assumption is correct because 80% of all the possible ¢ values are located if
this interval. Finally, note that the confidence interval is constructed around the sam-
ple mean. As a result, the sample mean, M = 107, is located exactly in the center of
the interval.

||
’j ‘ At one end of the interval we obtain 108.944 (107 + 1.944), and at the other

Figure 12.5 provides a visual presentation of the results from Example 12.1.
original population mean from 10 years ago is shown along with the two estl
(point and interval) of today’s mean. The estimates clearly indicate that there has

s
an increase in 1Q scores over the past 10 years, and they provide a clear indication ¢
how large the increase is.
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—
FIGURE 125

A representation of the esti-

Ten years ago the mean IQ
was . = 100, Based on a
sample of today’s students,
the mean has increased to

i = 107 (point estimate) or
somewhere between 105.056
and 108.944 (interval esti-

i mate).

mates made in Example 12.1.

80% confidence interval
for today's mean 1

( )

99 100 101 102 103 i04 105 106 107 108 109 1i0

B Estimated n
10 years ago for foday's students

Note that the populaticn mean,
|1, is 2 constant value. Because
the mean does not change, it is
incorrect to think that sometimes
p.18 in a specific interval and
sometimes it is not. Instead, the
ntervals change from one sam-
ple to another, so that w15 in
some of the intervals and is not
n others. The probability that
any individual confidence inter-
wal actuajly contains the mean is
determined by the level of confi-
dence (the percentage) used to
construct the interval.

Interpretation of the confidence interval In the preceding example, we computed
an 80% confidence interval to estimate an unknown population mean. We obtained an
interval ranging from 105.056 to 108.944, and we are 80% confident that the unknown
population mean is located within this interval. You should note, however, that the 80%
confidence applies to the process of computing the interval rather than the specific end
points for the interval. For example, if we repeated the process over and over, we could
eventually obtain hundreds of different samples (each with n = 64 scores) and we could
calculate hundreds of different confidence intervals. However, each interval is com-
puted using the same procedure. Specifically, cach interval is centered around its own
sample mean, and each interval extends from a value corresponding to £ = —1.296 at
one end to ¢ = +1.296 at the other end.

Figure 12.6 shows the distribution of ¢ values with the middle §0% highlighted. To
emphasize the fact that you can calculate a ¢ value for each sample, we have added a
line representing all the different samples. For example, a sample with a mean equal to
v would produce a ¢ value of ¢ = {. Two other samples are shown in the figure.

1. Sample 1 is an example of a sampie with a f value located inside the boundaries
of r = £1.296. Note that 80% of all the possible samples will be located between

FIGURE 12.6

Interpretation of the 80%

confidence for an 80% confi-

| dence interval. Of all the

possible samples, 80% will

have ¢ scores located in the
_m_ldd]e 80% of the distribu-

l _Iion and will produce confi-
derice intervals that overlap

¢ and conzain the population

mean. Thus, 80% of all the

I _pnssible confidence intervals

['ﬁﬂl contain the true value

AV

Distribution of fvalues
for df = 60

Micldle 80%
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Interval 1 F l

interval 2
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ESTIMATION OF p, — p, FOR
INDEPENDENT-MEASURES
STUDIES

EXAMPLE 12.2

these boundaries because 80% of all the possible ¢ statistics are between = 1.296.
Also note that the confidence interval for sample 1 overlaps the population mean
in the center of the distribution. Thus, the confidence interval for sample 1 in-
chudes the true population mean.

2. Sample 2, on the other hand, corresponds to a f value located outside the
+1.296 boundaries. Note that only 20% of all the possible samples will be
outside the boundaries. Also note that the confidence interval for sample

2 does not contain the population mean.

Qut of all the possible samples of n = 64 people, 80% will be similar to sample 1.
That is, they will corzespond to ¢ values between +1.296 and will produce confidence
intervals that contain the population mean. The other 20% of the possible samples will
be similar to sarple 2. They will correspond to ¢ values outside the +1.296 boundaries,
and they will produce confidence intervals that do not contain p. Thus, out of all the
different confidence intervals that we could calculate, 80% will actually contain the
population mean and 20% will not.

Note that the population mean, ., is a constant value. Because the mean does not
change, it is incorrect to think that sometimes w is in a specific interval and sometimes
it is not. Instead, the intervals change from one sampile to another, so that u is in some
of the intervals and is not in others. The probability that any individua! confidence in-
terval actually contains the mean is determined by the level of confidence (the percent- I

age) used to construct the interval.

The independent-measures f statistic uses the data from two separate samples to evalu-
ate the mean difference between two populations. In Chapter 10, we used this statistic
to-answer a yes-no question: Is there any difference between the two population means?
With estimation, we ask, How much difference? In this case, the independent-measures
t statistic is used to estimate the value of py — W, The following example demonstrates
the process of estimation with the independent-measures 7 statistic.

Recent stadies have allowed psychologists to establish definite links between specific
foods and specific brain functions. For example, lecithin (found in soybeans, eggs,
and liver) has been shown to increase the concentration of certain brain chemicals
that help regulate memory and motor coordination. This experiment is designed to
demonstrate the importance of this particular food substance.

The experiment involves two separate samples of newborn rats (an independent-
measures experiment). The 10 rats in the first sample are given a normal diet contain-
ing standard amounts of lecithin. The 5 rats in the other sample are fed a special dief,
which contains almost no lecithin. After 6 months, each of the rats is tested on a spe-
cially designed leaming problem that requires both memory and motor coordination.
The purpose of the experiment is to demonstrate the deficit in performance that resulis
from lecithin deprivation. The score for each animal is the number of errors it makes
before it solves the learning problem. The data from this experiment are as follows:

No-Lecithin Diet

Regular Diet

n=10 n=>5
M=25 M =133
85 = 250 S§ = 140




Sample 1 has 4f = 9, and sam-
ple 2 has df = 4. The ¢ statistic
has df = 0 -+ 4 = 13,
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Because we folly expect that there will be a significant difference between these two
treatments, we will not do the hypothesis test (aithough you should be able to do it).
We want to use these data to obtain an estimate of the size of the difference between
the two population means; that is, how much does lecithin affect learning perfor-
mance? We will use a point estimate and a 95% confidence interval.

The basic equation for estimation with an independent-measures experiment is

Wi~ g = (My — M) 15y, -1
The first é;tep is to obtain the known values from the sample data. The sample mean
difference is easy; one group averaged M = 25, and the other averaged M = 33, so
there is an 8-point difference. Note that it is not important whether we call this a +8
or a —8 difference. In either case, the size of the difference is 8 points, and the regu-

lar diet group scored lower. Because it is easier to do arithmetic with positive num-
bers, we will use

Ml_M2=8

Compute the standard error To find the standard error, we first must pool the two
variances:

2 S5+ 85, 250+ 140 _ 390 _
Foodf, +dfy 9+4 I3

30

Next, the pooled variance is used to compute the standard error:

2 2
S(M]—Mz): Sl+sl= @+£=V3+ =\/§:3
n 1) IO 5

Recall that this standard error combines the error from the first sample and the error
from the second sample. Because the first sample is much larger, n = 10, it should
have less error. This difference shows up in the formula. The larger sample
contributes an error of 3 points, and the smaller sample contributes & points, which
combine for a total error of 9 points under the square root.

Estimate the value(s) for ¢ The final value needed on the nght-hand side of the
equation is #. The data from this experiment would produce a ¢ statistic with df = 13.
With 13 degrees of freedom, we can sketch the distribution of all the possible ¢ values,
This distribution ts shown in Figure 12.7. The ¢ statistic for our data is sormewhere in

this distribution. The problem is to estimate where. For a point estimate, the best bet .

|
:J FIGURE 12,7

" The distribution of ¢ values
with df = 13. Note that
- {values pile up around zero
;{l_nd that 95% of the values

e located between —2.160

d +2.160.

df=13
2 =0.05Iin two tails
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is to use ¢ = (. This is the most likely value, located exactly in the middle of the dis-
tribution. To gain more confidence in the estimate, you can select a range of ¢ values.
For 95% confidence, for example, you would estimate that the ¢ statistic is somewhere
in the middle 95% of the distribution. Checking the table, you find that the middie
95% is bounded by values of # = +2.160 and ¢t = —~2.160.

Using these ¢ values and the sample values computed easlier, we now can estimate
the magnitude of the performance deficit caused by lecithin deprivation.

Compute the point estimate For a point estimate, use the single-value (point) esti-
mate of £ = (:
By~ e = (M — Mo) E I~y
=8 * 0(3)
=8
Note that the result simply uses the sample mean difference to estimate the population
mean difference. The conclusion is that lecithin deprivation produces an average of 8

more errdrs on the leamning task. (Based on the fact that the non-deprived animals
averaged around 25 errors, an 8-point increase would mean a performance deficit of

approximately 30%.)

Construct the interval estimate For an interval estitnate, or confidence interval, use
the range of ¢ values. With 95% confidence, at one extreme,

Ba g = (M) — My) 15 —ar)
= § + 2.160(3)
8 + 648
14.48

and at the other extreme,

B~ e = (M~ My) — s —my)
= 8§ — 2.160(3)
=8 - 048
= 1.52

This time we conclude that the effect of Jecithin deprivation is to increase errors. with
an average increase somewhere between 1.52 and 14.48 errors. We are 95% confident
of this estimate because our only estimation was the location of the ¢ statistic, and we
used the middle 95% of all the possible ¢ valoes.

Note that the result of the point estimate is to say that Jecithin deprivation will
increase errors by exactly 8 points. To gain confidence, you must lose precision and
say that errors will increase by-around 8 points (for 95% confidence, we say that the

average ncrease will be § = 6.48).

Finally, we turn our attention to the repeated-measures study. Remember that this ty n
of study has a single sample of subjects, which is measured in two different trea
conditions. By finding the difference between the score for treatment 1 and the 3
for treatment 2, we can determine a difference score for each subject.

ESTIMATION OF ., FOR
REPEATED-MEASURES
STUDIES

D=X,-X




EXAMPLE 12.3
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The mean for the sample of D scores, Mp, is used to estimate the population mean p,
which is the mean for the entire population of difference scores.

A research study has demonstrated that self-hypnosis can be an effective treatment for
allergies (Langewitz, Izakovic, & Wyler, 2005). The researchers recruited a sample of
patients with moderate to severe allergic reactions. The patients were then trained to
focus their minds on a specific place, such as a ski slope in the middle of winter,
where allergies did not bother them. The participants who practiced this self-hypnosis
therapy for the full 2 years of the study were then tested for allergic reactions to
pollen under two different conditions: once without self-hypnosis and once after using
the self-hypnosis therapy. Hypothetical data, similar to the actual research results,
show that allergic reactions averaged M = 71 without self-hypnosis and M = 50 after
using the self-hypnosis therapy. For this sample of » = 16 patients, the difference
scores averaged Mp = 21 points lower when the patients were using self-hypnosis,
with 885 = 1215. We will use these results to estimate how much effect self-hypnosis
therapy would have on allergy symptoms for the general population. Specifically, we
will make a point estimate and a 0% confidence interval estimate for the population
mean difference, |p.

You should recognize that this study requires a repeated-measures ¢ statistic. For
estimation, the repeated-measures + equation is as follows:

ho = Mp = isy,

The sample mean is My = 21, so all that remains is to compute the estimated stan-

dard error and estimate the appropriate value(s) for 7.

Compute the standard error To find the standard error, we first must compute the
sample variance:
2 S§ 1215 _

ST A 1T 1S

81
Now the estimated standard error is

st 8l 9
SMD—\ﬁ—- 16—4—2.25

To complete the estimate of wp, we must identify the value of r. We will consider the
point estimate and thé interval estimate separately.

Compute the point estimate To obtain a point estimate, a single value of ¢ is selected
to approximate the location of Mp. Remember that the 7 distribution is symmetrical and
bell-shaped with a mean of zero (see Figure 12.7). Because ¢ = 0 is the most frequently

occurring value in the distribution, this is the 7 value used for the point estimate. Using
this value in the estimation formula gives

o = Mp = 15y = 21 + 0(225) = 21

For this example, our best estimate is that the self-hypnosis will lower allergy symp-
toms in the general population by an average of pp = 21 points. As noted several
times before, the sample mean, Mp = 21, provides the best point estimate of up.

Construct the interval estimate We also want to make an interval estimate in
order to be 90% confident that the interval contains the value of pup. To get the
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FIGURE 12.8
The ¢ values for the 90%
11 confidence interval are ob-
Hl tained by consulting the ¢

H tables for df = 15, p = 0.10
for two tails.

Middle 0%
of t distribution

L

-1.753 0 +1.783

interval, it is necessary to determine what ¢ values form the boundaries of the middle
0% of the ¢ distribution. To use the 7 distribution table, we first must determine the
proportion associated with the tails of this distribution. With 90% in the middle, the
remaining area in both tails must be 10%, or p = .10. Also note that our sample has
n = 16 scores, so the ¢ statistic will have df = n — 1 = 15, Using df = 15 and p =
0.10 for two tails, you should find the values +1.753 and —1.753 in the r table. These
values form the boundaries for the middle 30% of the r distribution (Figure 12.8). We
are confident that the f value for our sample is in this range because 90% of all the
possible ¢ values are there. Using these values in the estimation formula, we obtain
the following: On one end of the interval,

Mo = Mp — Bar,
=21 —1.753(225)
=21-394
= 17.06
and on the other end of the interval,
pp = 21 + 1.7533(2.25)
=21+ 3.94
= 24.94

~

—_— e el B

Therefore, the researchers can conclude that self-hypnosis therapy would reduce al-
lergy symptoms in the general population by an average of around 21 points. They
can be 90% confident that the average reduction is between 17.06 and 24.94 points.
Given that the allergy symptoms for untreated patients averaged M = 71, thisis 2

reduction of around 30%.

S L E—

1. A researcher would like to determine the average reading ability for third-grade
students in the local school district. A sample of 1 = 25 students is selected an
each student takes a standardized reading achievement test. The average SCOr¢
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for the sample is M = 72 with S§ = 2400. Use the sample results to construct a
99% confidence interval for the population mean.

2. A psychologist studies the change in mood from the follicular phase (prior to

ovulation) to the luteal phase (after ovulation) during the menstrual cycle. In a
I repeated-measures study, a sample of n = 9 women take a mood questionnaire
during each phase. On average, the participants show an increase in dysphoria
{negative moods) of Mp = 18 points with §§ = 152. Determine the 95% confi-
dence imerval for population mean change in mood.

3. In families with several children, the first-born tend to be more reserved and
serions, whereas the last-born tend to be more outgoing and happy-go-lucky.
A psychologist is using a standardized personality inventory to measure the
| magnitude of this difference. Two samples are used: 8 first-born children and
|| 8 last-born children. Each child is given the personality test. The results are as
follows:

First-born Last-born

M=114 M=139
S8 =26 885 =130

‘ a. Use these sample statistics to make a point estimate of the population mean
| difference in personality for first-born versus last-born chiidren.
g b. Make an interval estimate of the population mean difference so that you are
80% confident that the true mean difference is in your interval.

ANSWERS 1. The sample variance is 5 = 100 and the estimated standard error is s,, = 2 points. With
df = 24 and 99% confidence, the # statistic should be between +2.797 and —2.797. With
99% confidence, we estimate that the population mean is between 66.406 and 77.594.

2. 82 =19, Spr, = 145, df = §, t = *2.306; estimate that |, is between 14.66 and 21.34,

3. a. For a point estimate, use the sample mean difference: M — M, = 2.5 points.

b. Pooled variance = 4, estimated standard error = 1, df = 14, t = *1.345, The 80%
confidence nterval js 1.16 to 3.85.

m FINAL LOOK AT ESTIMATION

FACTORS AFFECTING Two characteristics of the confidence interval should be noted. First, notice what hap-
THE WIDTH OF A pens to the width of the interval when you change the level of confidence (the percent '
CONFIDENCE INTERVAL  confidence). To gain more confidence in your estimate, you must increase the width of
the interval. Conversely, to have a smaller interval, you must give up confidence, This
is the basic trade-off between precision and confidence that was discussed eaglier. In !
the estimation formula, the percentage of confidence influences the width of the inter-
val by way of the ¢ value. The larger the level of confidence (the percentage), the larger
the 7 value and the larger the interval. This relationship can be seen in Figure 12.8. In
the figure, we identified the middle 90% of the ¢ distribution in order to find a 90%
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ESTIMATION, EFFECT SIZE,
AND HYPOTHESIS TESTS

confidence interval. It should be obvious that if we were to increase the confidence
level to 95%, it would be necessary to increase the range of ¢ values and thereby in-
crease the width of the interval.

Second, note what would happen to the interval width if you had a different sample
size. This time the basic rule is as follows: The bigger the sample (n), the smaller the
interval. This relationship is straightforward if you consider the sample size as a mea- .
sure of the amount of information. A bigger sample gives you more information about
the population and allows you to make 3 more precise estimate (a narrower integval), -
The sample size controls the magnitude of the standard error in the estimation formula.
As the sample size increases, the standard error decreases, and the interval gets smaller.

With ¢ statistics, the sample size has an additional effect on the width of a confidence
interval. Remember that the exact shape of the 7 distribution depends on degrees of free-
dom. As the sample size gets larger, df also gets larger, and the ¢ values associated with
any specific percentage of confidence get smaller. This fact simply enhances the gen-
eral relationship that the larger the sample, the smaller the confidence interval.

The process of estimation, especially the estimation of mean differences, provides a rel-
atively simple and direct method for evaluating effect size. For example, the ontcome
of the study in Example 12.3 indicates that self-hypnosis can reduce allergy symptoms
by an estimated 21 points, or about 30%. In this case, the estimation process produces
a very clear and understandable indication of how large the treatment effect actually is.

In addition to describing the size of a treatment effect, estimation can be used to get an
indication of the “significance” of the effect. Example 12.2 presented an independent-
measures research study examining the effect of lecithin on problem-solving performance
for rats. Based on the results of this study, it was estimated that the mean difference in
performance produced by lecithin was 1, — py = 8 points. The 95% confidence interval
estimated the mean difference to be between 1.52 points and 14.48 points. The confidence
interval estimate is shown in Figure 12.9. In addition to the confidence interval for
M1 — M, we have marked the spot where the mean difference is equal to zero. You should
recognize that a mean difference of zero is exactly what would be predicted by the aull
hypothesis if we were doing a hypothesis test. You alse should realize that a zero
difference (1 — po = 0) is outside the 95% confidence interval. In other words,
p1 — o = 0 is not an acceptable value if we want 95% confidence in our estimate. To
conclude that a value of zero is not acceptable with 95% conflidence is equivalent to con-
cluding that a value of zero is refected with 95% confidence. This conclusion is equiva-
lent to rejecting fy with oo = .05. On the other hand, if a mean difference of zero
was included within the 95% confidence interval, then we would have to conclude that
py — pg = O1s an acceptable value, which is the same as failing to reject Hy,

FIGURE 12.9

The 95% confidence interval
for the population mean
difference (., — pa) from
Example 12.2. Note that

p1 — po = 0is excluded
from the confidence interval,
indicating that a zero differ-
ence is not an acceptable
value (H, would be rejected

un a hypothesis test).

@5% confidence interval
152 estimate for p, ~ po 14.48
{= )

012345 678910111213 14 15

My =~ B
gecording to Hy
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SUMMARY 377

If all other factors are held constant, an 80% confidence interval will be wider than
a 90% confidence interval. (True or false?)

If all other factors are held constant, a confidence interval computed from a sam-
ple of n = 25 will be wider than a confidence interval from a sample of 1 = 100.
{True or false?)

. A 99% confidence interval for a population mean difference (p.p) extends from

—1.50 to +3.50. If a repeated-measures hypothesis test with two tails and o = .01
were conducted using the same data, the decision would be to fail to reject the null
hypothesis. (True or false?)

. False. Greater confidence requires a wider interval.
. True. The smaller sample will produce a wider interval.

. True. The value wp = 0 is included within the 99% confidence interval, which means that it

is an acceptable value with @ = .01 and would not be rejected.

SUMMARY

. Estimation is a procedure that uses sample data to ob-

tain an estimate of a population mean or mean difference.
The estimate can be either a point estimate {single value)
or an interval estimate (range of values). Point estimates
have the advantage of precision, but they do not give
much confidence. Interval estimates provide confidence,
but you lose precision as the interval grows wider.

. Estimation and hypothesis testing are similar processes:

Both use sample data to answer questions about popula-
tions. However, these two procedures are designed to
answer different questions. Hypothesis testing will tell
you whether or not a treatment effect exists (yes or no).
Estimation will tell you how much treatment effect
there is.

The estimation process begins by solving the s-statistic
equation for the unknown population mean (or mean
difference).

population mean _ sample mean
{or mean difference)  (or mean difference)
* t(estimated standard error)

Except for the value of £, the numbers on the right-
hand side of the equation are all obtained from the
sample data. By using an estimated value for 1, you
can then compute 4n estimated value for the popula-
tion mean (or mean difference). For a point estimate,
use 1 = 0. For an interval estimate, first select a level
of confidence and then look up the corresponding

range of £ values from the #-distribution table. For
example, for 90% confidence, use the range of ¢ values
that determine the middle 90% of the distribution.

4. For a single-sample study, the mean from one sample is
used to estimate the mean for the corresponding popula-
ton.

po=M I 5y

For an independent-measures study, the means from
two separate samples are used {o estimate the mean
difference between two populations,

My = w2) = My — My) £ 156w —ary

For a repeated-measures study, the mean from a sam- -
ple of difference scores (D values) is used to estimate
the mean difference for the general population.

Hp = Mp = t8a,,

5. The width of a confidence interval is an indication of its

precisiorn: A narrow interval is more precise than a wide
interval. The interval width is influenced by the sample
size and the level of confidence.
a. As sample size (n) gets larger, the interval width
gets smaller (greater precision).
b. As the percentage confidence increases, the interval
width gets larger (less precision).




