Math 525-Homework 5

Due Monday 04/22
Unless otherwise instructed, conduct all hypothesis tests at the $\alpha=.05$ level. Note that the chapter numbers no longer correspond to the current edition of the book; they are just there for my own purposes. The material on confidence intervals is available on the class website.

1. Problem 12.1: Explain the trade off between precision and confidence for interval estimates.
2. Problem 12.6: A school wants to know how much TV it's students watch and they assume it is normally distributed. A sample of $n=25$ kids produce a mean $\bar{X}=3.1$ and a standard deviation of $S=3$. Make a 90% confidence interval for the true population mean.
3. Problem 13.1: Explain why the F-ratio of an ANOVA test is expected to be near 1.00 when the null hypothesis is true.
4. Problem 13.20: Fill in the missing values from this ANOVA summary table below and determine if you can reject H_{0}. This data was created by studying $n=12$ participants in 3 different treatment conditions. Hint: Start with the df column.

Source	$S S$	$d f$	$M S$	
Between	----	---	9	$F=?$
Within	---	---	---	
Total	117	----		

5. Problem 13.19: Students are asked how likely they are to cheat on an exam on a scale of 1 to 10 ; the results are below. Determine with an ANOVA whether or not there is a significant difference between mean likelihood of student cheating beliefs across teacher ability.

Poor	Average	Good	
$n=6$	$n=8$	$n=10$	$N=24$
$\bar{X}=6$	$\bar{X}=2$	$\bar{X}=2$	$\sum X=72$
$S S=30$	$S S=33$	$S S=42$	$\sum X^{2}=393$

6. Problem 12.18: The following data measures the number of doses required for three different treatments of bird flu before the patient saw improvement.

Treatment			
	I	II	III

Run an ANOVA to determine if there is a significant difference in the mean dose requirement for these three treatments. If there is, run a Scheffé post-hoc test to determine which treatments are significantly different.
7. Problem 13.4: Why is it better to use ANOVA than multiple t-tests to determine if several normally distributed populations have equal means?
8. Problem 16.10: Use this data to answer the following questions. For each correlation coefficient, determine if it is statistically significant.

X	3	4	2	1	0
Y	5	3	4	1	2
Z	5	2	6	3	4

a) Compute the Pearson coefficient between X and Y. b) Compute the Pearson coefficient between Y and Z. c) Compute the Pearson coefficient between X and Z. d) Try to make a general conclusion about correlations based on answering "If X is related to Y and Y is related to Z, does this require X to be related to Z ?".
9. Problem 15.10: For the following set of scores:

$$
\begin{array}{c|cccccc}
X & 6 & 3 & 5 & 6 & 4 & 6 \\
\hline Y & 4 & 1 & 0 & 7 & 2 & 4
\end{array}
$$

a) Compute the Pearson correlation. b) Add 2 points to each X value and compute the correlation for these modified values. How does adding a constant affect the correlation? c) Multiply each of the original X values by 2 and compute the correlation for these modified values. How does this scaling affect the correlation?
10. Problem 17.8: Use the following data to answer these questions about regression.

$$
\begin{array}{c|cccccc}
X & 1 & 4 & 3 & 2 & 5 & 3 \\
\hline Y & 2 & 7 & 5 & 1 & 14 & 7
\end{array}
$$

a) Find the regression equation for predicting Y from X. b) Used the regression equation to find a predicted Y for each X. c) Find the difference between the observed Y values and the predicted Y values and make a column of data containing those differences. Compute the $S S_{\text {res }}$ value of that column. d) Calculate the Pearson correlation coefficient r for this data. Use r^{2} and $S S_{y}$ to compute $S S_{\text {res }}$ and compare it to the value from part \mathbf{c}.

