Math 425 - Homework 3

Due Monday 03/04
Email work to mccomic@mcs.anl.gov
Note: These problem numbers may be different than in your version of the text.

1. Problem 7.13: A normally distributed population has a mean of $\mu=80$ and a standard deviation of $\sigma=20$. Calculate the z-score for each of the following samples and determine if that sample has a typical mean or an extreme mean: a) $n=4$ and $\bar{X}=90$, b) $n=25$ and $\bar{X}=84, \mathbf{c}) n=100$ and $\bar{X}=84$.
2. Problem 7.22: Jurors are randomly selected with $\mu=39.7$ and $\sigma=12.4$. A statistician randomly selects a $n=16$ sample from current jurors and finds their average age to be $\bar{X}=48.9$. How likely is it that a random sample of that size would have that at least that average age?
3. Problem 8.6: A sample of $n=25$ students participate in a skills training program. The general population of students score along the distribution $N(150,25)$ on a skills exam, without the training program; the sample of students had an average score of $\bar{X}=158$. a) Identify the independent and dependent variables in this study. b) Assuming a two-tailed test, state the hypotheses H_{0} and H_{1}. d) Sketch the appropriate distribution of sample means, identify the mean and SD of that distribution, and shade the rejection region for $\alpha=.05$. e) Calculated the test-statistic (z-score) for the sample. f) Determine if you can reject H_{0}.
4. Problem 8.9: A self-esteem program has $n=16$ participants drawn from a population whose self-esteem scores are normally distributed with $\mu=40$ and $\sigma=8$. a) If the researcher obtains a sample mean of $\bar{X}=42$, is this enough evidence to conclude an $\alpha=.05$ significant effect for a two-tailed test? b) If the sample mean is $\bar{X}=44$ do you see an $\alpha=.05$ significant effect with a two-tailed test?
5. Problem 8.23: Researchers want to test a drug on individuals who have blood pressure issues. For the population, average scores are normally distributed with $\mu=160$ and $\sigma=20$. The researcher uses a sample of $n=25$ and wants to test for significance at the $\alpha=.05$ level with a two-tailed test. a) What is the power of the test if the medication causes a 5 point reduction? b) What is the power of the test if the medication causes a 10 point reduction?
6. Problem 9.11: A random sample of $n=16$ individuals is selected from a population with $\mu=70$. After a treatment, the sample mean is found to be $\bar{X}=76$ with $S S=960$. a) What is the difference between the sample and population means, the numerator of the t statistic? b) How much difference will occur by chance, as determined by the standard error, the denominator of the t-statistic? c) Using the first two results, compute the t-statistic and determine if the treatment has an $\alpha=.05$ significant effect with a two-tailed test.
7. Problem 9.18: Research has shown that a sample of $n=25$ children who attended day care had an average score of $\bar{X}=27$ with $S S=1536$ on the MIKE test. It is known that the population of young children have an average score of $\mu=21$ on the MIKE (that's out of 100 ... it's a very difficult test). Is this sample data enough to conclude with $\alpha=.01$ that children in day care are better on the MIKE than the rest of the population?
8. Explain how the power of a t-test is influenced by each of the following, assuming other factors are held constant: a) Increasing the α level from .01 to $.05, \mathbf{b}$) Changing from a two-tailed test to a one-tailed test, \mathbf{c}) Doubling the number of participants in your sample.
