Math 425/525-Homework 2

Due Monday 02/18

1. Problem 4.2: Can $S S$ ever have a value less than zero? Why or why not?
2. Problem 4.4: What does it mean for a sample to have standard deviation of 0 ? Describe such a sample.
3. Problem 4.8: A population has a mean of $\mu=30$ and a standard deviation of $\sigma=5$. a) If 5 points were added each score, what would be the new mean $\hat{\mu}$ and standard deviation $\hat{\sigma}$? b) If each score were multiplied by 3 , what would be $\hat{\mu}$ and $\hat{\sigma}$?
4. Problem 4.19: For the following sample of $n=5$ scores, compute the $S S$, variance and standard deviation. $X=\{9,6,2,2,6\}$
5. Suppose we have the population $X=\{1,1,1,2,2,4,5,5,5,6,6,6,7,9,9\}$ with $N=15$. a) Determine the variance of this population. b) Choose any 5 elements from this population to serve as a sample. List those elements, and determine the variance of that sample. c) Compare the two variances that you have calculated.
6. Problem 5.4: For a population with $\mu=50$ and $\sigma=8$, a) Find the Z-score for each of the X values: $\{54,62,52,42,48,34\}, b)$ Find the X value associated with each of the Z-scores: $\{1, .75,1.5,-.5,-.25,-1.5\}$.
7. Problem 5.14: For a population with a standard deviation of $\sigma=8$, a score of $X=44$ corresponds to $z=-.5$. What is the population mean?
8. A jar contains 20 red marbles, or which 10 are large and 10 are small, and 30 blue marbles, or which 10 are large and 20 are small. If 1 marble is randomly selected from the jar, a) What is the probability of obtaining a blue marble? b) What is the probability of obtaining a large marble? c) What is the probability of obtaining a large blue marble? d) What is the probability of obtaining a red marble if you know that you drew a small marble?
9. Problem 6.7: Find each of the following probabilities for a normal distribution: a) $P(Z>.25)$, b) $P(Z>-.75)$, c) $P(Z<1.2)$, d) $P(Z<-1.2)$, e) $B O N U S$: Can you give me a nonzero value for $P(Z>6)$ with at least two significant digits?
10. Problem 6.14: The distribution of IQ scores is normal with $\mu=100$ and $\sigma=15$. What proportion of the population has IQ scores a) Greater than 140 ? b) Between 120 and 140 ? c) Between 90 and 109 ?
11. Problem 6.19: A consumer survey indicates that the average household spends $\mu=\$ 185$ on groceries each week. The distribution of spending amounts is approximately normal with a standard deviation of $\sigma=\$ 25$. a) What proportion of the population spends more than $\$ 200$ per week on groceries? b) What is the probability of randomly selecting a family that spends less than $\$ 150$ per week on groceries? c) How much money do you need to spend on groceries each week to be in the top 20% of the distribution?
12. Problem 6.24: A roulette wheel has alternating red and black number slots (and also green, but we will ignore those for this problem). If a gambler always bets on black to win, what is the probability of winning at least 24 times out of 36 total spins?
