CHAPTER 9

THREE GEOMETRIES

9.1 INTRODUCTION

This chapter is purely informal; it does not form a part of the deductiveA sequence.
of the rest of the book. In fact, in this chapter we shall not prove anything at all;
but everything that we discuss will be taken up more fully later. IF may be of some
help, however, to sketch in advance the kinds of geometry to which our theorems
are going to apply. . _

Fir tﬁe sake of simplicity, we shall limit ourselves to ge'ometr-y in a plane.
The ideas that we shall discuss can be generalized to three dimensions, but only
at the cost of considerable labor. ‘

Two lines are called parallel if they lie in the same plane but do not intersect.
In a Euclidean plane, the familiar parallel postulate holds.

The Euclidean Parallel Postulate. Given a line L ?,nd a point P not on L, there
is one and only one line L’ which contains P and is parallel to L.

This says that parallels always exist and are ailwa.-ys unique. . N

Tor quite a while—for a couple of millennia, in fact—this 'propOSL‘tlon was
regarded as a law of nature. In the nineteenth century, however, it was discovered
by Lobachevski, Bolyai, and Gauss that you could get a perfectly consistent mathe-
matical theory by starting with a postulate which states that parallels always
exist, but denies that they are unique.

The Lobachevskian Parallel Postulate. Given a line L and a point P not on L,
there are at least two lines L, L'* which contain P and are parallel to L.

Freure 9.1

The picture looks implausible, because we are accustomed to thinking of the
plane of the paper as Euclidean. But it is a fact, as we s.hall see, that a mathe-
matical theory can be based on Lobachevski’s postulate. And sucha theory actually
has applications in physics.

There is yet a third alternative. We can deny not the uniqueness of parallels
but their existence.
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The Riemannion Parallel Postulate. No two lines in the same plane are ever
parallel.

These postulates give us three kinds of “plane geometry,” the Euclidean, the
Lobachevskian, and the Riemannian. In each of the three theories, of eourse,
many other postulates are needed; we have merely been singling out their crucial
difference. In this book, we shall be concerned mainly with the first of these geom-
etries, incidentally with the second, and hardly at all with the third. In the follow-
Ing sections, we give concrete examples, or models, of these kinds of geometry,
and indicate the most striking differences between them. In going through the
rest of this book, you should have one of these models in mind most of the time;
and at some points you should have in mind two of them.

9.2 THE POINCARE MODEL FOR LOBACHEVSKIAN GEOMETRY

In this section we shall assume that there is a mathematical system satisfying
the postulates of Euclidean plane geometry, and we shall use Euclidean geometry
to describe a mathematical system in which the Euclidean parallel postulate fails,
but in which the other postulates of Euclidean geometry hold,

Consider a fixed circle C in a Euclidean plane. We assume, merely for the sake
of convenience, that the radius of C'is 1. Let E be the interior of .

- Ficure 9.2

By an L-circle (L for Lobachevski) we mean a circle ¢/ which is orthogonal to C.
When we say that two circles are orthogonal, we mean that their tangents at
each intersection point are perpendicular. If this happens at one intersection
point R, then it happens at the other intersection point S. But we shall not stop
to prove this, or, for that matter, to prove anything else; this chapter is purely
descriptive and proofs will come later.

The points of our L-plane will be the points of the interior £ of C. By an L-line

we mean (1) the intersection of F and an L-circle, or (2) the intersection of £ and
a diameter of C.
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It is a fact that
I-1. Every two points of E lie on exactly one L-line.

We are going to define a kind of “plane geometry,” in which the “plane” is the
set E and the lines are the L-lines. In our new geometry we already know what is
meant by point and line. We need next to define distance and angular measure.

For each pair of points X, ¥, either on C or in the interior of C, let XY be the
usual Euclidean distance. Notice that if R, S, T and U, are as in the figure, then
R and 8 are not points of our L-plane, but they are points of the Euclidean plane
that we started with. Therefore, all of the distances T'S, TR, US, UR are defined,
and (I) tells us that R and § are determined when 7 and U are named. There is
one and only one L-line through T and U, and this L-line cuts the circle C' in the
points R and 8. We shall use these four distances 'S, TR, US, UR to define a
new distance d(T, U) in our “plane” E, by the following formula:

TR/TS
UR/US

Evidently we have the following postulate.

AT, U) =

log,

D-0. d is a funection
d:EX E— R

Let us now look at the ruler postulate D-4. On any L-line L, take a point U
and regard this point as fixed. For every point T of L, let

§T) = Yo s

That is, f(T) is what we get by omitting the absolute value signs in the formula for
d(T, U). We now have a function,

f:L—=R
We shall show that f is a coordinate system for L.

If V is any other point of L, then

V) = logs ——Eﬁ%ﬁ

Let z = f(T) and y = f(V). Then

oot ey TR/TS | - VR/VS
lz — 9l = loge 7R 778 c URJUS

because the difference of the logarithms is the logarithm of the quotient. Therefore

fog TR/TSl ,

UR/US

log.

which means that our new distance function satisées the ruler postulate.
Since D-4 holds, the other distance postulates automatically hold. (See Problem
1, Section 3.3.)
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fV;fle define betweenness, segments, rays, and so on, exactly as in Chapter 3. All
0 t e theorems of Chapter 3 hold in our new geometry, because the new geometry
§a:13ﬁes ft}éehpOStulates on which the proofs of the theorems were based. The same
18 true o apter 4; it is rather easy to convince yvourself th. ; i
e ene y that the plane-separation

To discuss congruence of angles, we need to define an angular-measure function.

Given an “L-angle” in our new
_ geometry, we form an angle in th
by using the two tangent rays: ¢ 8 ARSI

Ficure 9.3

We then define the measure mZBAC of ZBAC t i
o be th
sense) of the Euclidean angle /B’ AC". " st ffathil

It is a fact that the resulting structure
(£, L,d,m]

satisfies all the postulates of Chapters 2 through 6, including the SAS postulate
The proof of this takes time, however, and it requires the use of more Euclidf‘:-;,n:
geometry that we know so far. Granted that the postulates hold, it follows t};at
the t.he‘orems also hold. Therefore, the whole theory of congruer;ce and of geo-
metric inequalities, applies to the Poincaré model of Lobachevskian éeometry.

Freure 9.4
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‘On the other hand, the Euclidean parallel postulate obviously dees not hold
for the Poincaré model. Consider, for example, an L-line L which does not pass
through the center P of C' (Fig. 9.4). Through P there are infinitely many L-lines
which are parallel to L.

Lobachevskian geometry (also called hyperbolic geometry) is the kind represented
by the Poincaré model. In such a geometry, when the familiar parallel postulate
fails, it pulls down a great many familiar theorems with it. A few samples of
theorems in hyperbolic geometry which are quite different from the analogous
theorems of Euclidean geometry follow.

(1) No quadrilateral is a rectangle. In fact, if a quadrilateral has three right
angles, the fourth angle is always acute.

(2) For any triangle, the sum of the measures of the angles is always sirictly
less than 180.

(3) No two triangles are ever similar, except in the case where they are also
congruent.

The third of these theorems means that two figures cannot have exactly the same
shape, unless they also have exactly the same size. Thus, in hyperbolic geometry,
exact scale models are impossible.

In fact, each of the above three theorems characterizes hyperbolic geometry.
If the angle-sum inequality,

ms A+ mLB + mZC < 180,

holds, even for one triangle, then the geometry is hyperbolic; and if the angle-sum
equality holds, even for one triangle, then the geometry is Buclidean ; similarly
for (1) and (3).

This has a rather curious consequence in connection with our knowledge of
physical space. If physical space is hyperbolic, which it may be, it is theoretically
possible for the fact to be demonstrated by measurement. For example, suppose
that you measure the angles of a triangle, with an error less than 0.0001" for
each angle. Suppose that the sum of the measures turns out to be 179°59'59.999".
The difference between this and 180° is 0.001”. This discrepancy could not be due
to errors in measurement, because the greatest possible cumulative error is only
0.0003"". Our experiment would therefore prove that the space that we live in
is hyperbolic. (Granted, of course, that it satisfies the other postulates.)

On the other hand, no measurement however exact can prove that space 1§
Euclidean. The point is that every physical measurement involves some possible
error. Therefore we can never show by measurement that an equation,

r+ s+ ¢t = 180,

holds exactly; and this is what we would have to do to prove that the space we
live in is Euclidean.

Thus there are two possibilities: (1) The Euclidean parallel postulate does not
hold in physical space, or (2) The truth about physical space will forever be
unknown.
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9.3 THE SPHERICAL MODEL FOR RIEMANNIAN GEOMETRY
fo'.t. V be the surface o_f a sphere in space. We may as well assume that the radius
of Vis = 1. A great circle is a circle which is the intersection of V with a plane

thrc)ugh' itls f:enter. If T and U are any points of V, then the shortest path on the
surface joining T to U is an arc of a great circle.

Fraure 9.5

. We might start to define a kind of “plane geometry” on V by taking the great
circles as our lines. In this scheme we would take the length of the shortest path
between each pair of points as the distance between the two points. The resulting
system has some of the properties that we expect in plane geometry. For example
every “line” separates our “plane” into two “half planes,” each of which is convex’
But the Euclidean parallel postulate fails badly; i.e., every two lines intersect‘
Our “geometry” has many other peculiar properties. l

(1) Two points do not necessarily determine a “line.” For example, the north
and south poles N and S lie on infinitely many great circles. )

The same is true for the end points of any diameter of the sphere V. Such points
are called antipodal. (More precisely, two points A4 and B of V are antipodal if
the segment A B passes through the center of V)

(2) While our “lines” never come to an end at any point, they are nevertheless
ﬁ_}11te mn extent. In fact, if the radius of V is = 1, then the maximum possible
;llz)s]?nce between any two points is . Thus the ruler postulate cannot possibly

(3) Betweenness, in the form in which we are accustomed to it collapses com-
pletely. In fact, given three points of a line it is not necessarily i;rue that one of
them is between the other two. We may have AB = BC = AC. '

(4) Tl}e per;_)endicular to a line, from an external point, always exists, but is not
necessarl.ly unique. For example, any line joining the North Pole to a p,ooint of the
equator 1s perpendicular to the equator.

(5.) Some triangles have two right angles. (In the Fig. 9.5 at the start of this
section, AANC has right angles at both A and C.)

(6) The exterior angle theorem fails. (See the same example.)
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The only one of these peculiarities that we can avoid is the first. We do this by
altering the model in the following way. If two points A, B are antipodal, then
we shall regard them as being the same. To be more precise, a point of our new
geometry will be a pair of antipodal points of the sphere V. If 4 is a point of the
sphere V, then A denotes the pair {4, A’}, where 4’ is the other end of the
diameter that contains A. The points of our Riemannian plane E will be the
pairs 4.

Ficure 9.6

If L is a great circle on V, then L is the set of all points A for which A is on L.
The sets L will be the lines in E.

The distance d(4, B) between two points 4 and B is the length of the shortest
arc from 4 (or A') to B (or B’). Notice that this may easily be less than the length
of the shortest arc from A4 to B. .

In our new geometry, two points 4, B always determine a unique “line.” The
reason is that if A and B were antipodal on the sphere, 4 and B would be the same.

The Euclidean parallel postulate still fails, of course; two of our new lines always
Intersect in exactly one point. Lines are still of finite extent; the maximum possible
distance between two points is now m/2. Betweenness still does not work. Per-
pendiculars still are not unique; we still have triangles with two right angles, and
the exterior angle theorem still fails.

In fact, in arranging for two points to determine a line, we have introduced a new
peculiarity: no line separates our Riemannian plane. In fact, if L is a line, and 4
and B are any two points net on L, then there is always a segment which goes
from 4 to B without intersecting .

In this book, we shall be concerned mainly with Euclidean geometry, but we
shall devote considerable attention to hyperbolic geometry, mainly because it
throws light on Euclidean geometry. The point is that these two kinds of geometry
have so much in common that at the points where they do differ the differences are
instructive. On the other hand, the differences between Riemannian and Euclidean
geometry are so fundamental that it really forms a technical specialty, which is
remote from our main purpose. We shall not be concerned with it hereafter in this
book.
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9.4 SOME QUESTIONS FOR LATER INVESTIGATION

In this chapter, we have raised more questions than we have answered.

(1) We have said that the Poincaré model for hyperbolic geometry satisfies all
of the postulates of Euclidean geometry, with the sole exception of the Euclidean
parallel postulate. This needs to be proved, and we surely haven’t proved it with
our conversational discussion in Section 9.2.

To check these postulates is a rather lengthy job. The reader is warned that this
sort of verification is discussed rather casually in much of the literature. If the
models for hyperbolic geometry had in common with Euclidean geometry merely
the trivial properties that are discussed in semipopular books, they would not
have the significance which is commonly and rightly attributed to them.

(2) When the postulates are checked, for the Poincaré model, we will know that
hyperbolic geometry is just as good, logically, as Euclidean geometry. We con-
structed the model on the basis of Euclidean geometry. Therefore, ¢f there is a
mathematical system satisfying the Euclidean postulates, it follows that there is
a system satisfying the Lobachevskian postulates,

(3) There remains the f in (2). Is there a system satisfying the Euclidean
postulates? To prove this, we need to set up a model. We shall see that this can
be done, assuming that the real number system is given.



